精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

分析 (1)设公差为d,则$\left\{\begin{array}{l}{q+(6+d)=12}\\{6+d={q}^{2}}\end{array}\right.$,解得d,q即可得出.
(2)由(1)可知cn=3n-2λn,由数列{cn}是递增数列,可知cn<cn+1恒成立,代入化简即可得出.

解答 解:(1)设公差为d,则$\left\{\begin{array}{l}{q+(6+d)=12}\\{6+d={q}^{2}}\end{array}\right.$,解得d=q=3,
所以an=3+3(n-1)=3n,bn=3n-1
(2)由(1)可知cn=3n-2λn,
由数列{cn}是递增数列,可知cn<cn+1恒成立,
即3n-2λn<3n+1-2λ(n+1)恒成立,即λ<3n恒成立,
显然,数列{3n}是递增数列,
∴当n=1时,3n取最小值3,
所以λ<3.

点评 本题考查了等差数列的通项公式与求和公式、数列递推关系、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=log2(x-1)-$\frac{1}{{\sqrt{2-x}}}$的定义域为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{2-i}{1+i}$(其中i是虚数单位)的虚部为(  )
A.$-\frac{3}{2}i$B.$\frac{1}{2}i$C.$-\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的等边三角形,点A1在底面ABC上的投影D恰好为BC的中点,AA1与平面ABC所成角为45°,则该三棱柱的体积为(  )
A.1B.$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机有放回的抽取2张,则取出的2张卡片上的数字之差的绝对值为奇数的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆锥的表面积为am2,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为$\sqrt{\frac{a}{3π}}$ m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z满足z=$\overline{z}$+$\frac{1+i}{1-i}$,其中$\overline{z}$为z的共轭复数,则z的虚部是(  )
A.1B.iC.$\frac{1}{2}$D.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某市春节期间7家超市广告费支出xi(万元)和销售额yi(万元)数据如下:
超市ABCDEFG
广告费支出xi1246111319
销售额yi19324044525354
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用二次函数回归模型拟合y与x的关系,可得回归方程:$\stackrel{∧}{y}$=-0.17x2+5x+20,经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为3万元时的销售额.参数数据及公式:$\overline{x}$=8,$\overline{y}$=42,$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$xi2=708,
(3)用函数拟合解决实际问题,这过程通过了收集数据,画散点图,选择函数模型,求函数表达式,检验,不符合重新选择函数模型,符合实际,就用函数模型解决实际问题,写出这过程的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)的导函数f′(x)满足关系式f(x)=x2+2xf′(2)-lnx,则f′(2)的值为(  )
A.-3.5B.3.5C.-4.5D.4.5

查看答案和解析>>

同步练习册答案