精英家教网 > 高中数学 > 题目详情
2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机有放回的抽取2张,则取出的2张卡片上的数字之差的绝对值为奇数的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,基本事件总数n=${C}_{4}^{2}$=6,取出的2张卡片上的数字之差的绝对值为奇数的事件个数m,由此能求出取出的2张卡片上的数字之差的绝对值为奇数的概率.

解答 解:4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,
基本事件总数n=${C}_{4}^{2}$=6,
取出的2张卡片上的数字之差的绝对值为奇数的基本事件个数m=${C}_{2}^{1}$${C}_{2}^{1}$=4,
∴取出的2张卡片上的数字之差的绝对值为奇数的概率为$\frac{4}{6}$=$\frac{2}{3}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+a|+|x-2|.
(1)若f(x)的最小值为4,求实数a的值;
(2)若-1≤x≤0时,不等式f(x)≤|x-3|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.
(2)若x=3是f(x)的极值点,求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(2-$\frac{1}{x}$)(1-2x)4的展开式中x2的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平面内的小圆形按照如图中的规律排列,每个图中的圆的个数构成一个数列{an},则系列结论正确的是(  )
①a5=15;                               
②数列{an}是一个等差数列;
③数列{an}是一个等比数列;
④数列{an}的递推关系是an=an-1+n(n∈N*).
A.①②④B.①③④C.①②D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.
十六进制01234567
十进制01234567
十六进制89ABCDEF
十进制89101112131415
例如,用十六进制表示E+D=1B,则A×C=(  )
A.6EB.78C.5FD.C0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在下列区间中,函数$f(x)=lnx-\frac{2}{x}$的零点所在大致区间为(  )
A..(1,2)B..(2,3)C..(3,4)D.(e,3)

查看答案和解析>>

同步练习册答案