精英家教网 > 高中数学 > 题目详情
10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

分析 由z求出$\overline{z}$,代入$\frac{i}{\overline{z}}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=3+4i,
∴$\frac{i}{\overline{z}}$=$\frac{i}{3-4i}=\frac{i(3+4i)}{(3-4i)(3+4i)}=-\frac{4}{25}+\frac{3}{25}i$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,若sinA+$\sqrt{2}$sinB=2sinC,则cosC的最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{2-i}{1+i}$(其中i是虚数单位)的虚部为(  )
A.$-\frac{3}{2}i$B.$\frac{1}{2}i$C.$-\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的程序框图中,若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,则输出的结果是(  )
A.16B.8C.216D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的等边三角形,点A1在底面ABC上的投影D恰好为BC的中点,AA1与平面ABC所成角为45°,则该三棱柱的体积为(  )
A.1B.$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机有放回的抽取2张,则取出的2张卡片上的数字之差的绝对值为奇数的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z满足z=$\overline{z}$+$\frac{1+i}{1-i}$,其中$\overline{z}$为z的共轭复数,则z的虚部是(  )
A.1B.iC.$\frac{1}{2}$D.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2015}{b}_{2016}}$=(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

同步练习册答案