精英家教网 > 高中数学 > 题目详情
20.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2015}{b}_{2016}}$=(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

分析 直接利用给出的定义得到$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,整理得到Sn=2n2+n.分n=1和n≥2求出数列{an}的通项,验证n=1时满足,所以数列{an}的通项公式可求;再利用裂项求和方法即可得出.

解答 解:由已知定义,得到$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,
∴a1+a2+…+an=n(2n+1)=Sn
即Sn=2n2+n.
当n=1时,a1=S1=3.
当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时也成立,
∴an=4n-1;
∵bn=$\frac{{a}_{n}+1}{4}$=n,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2015}{b}_{2016}}$=$\frac{2015}{2016}$,
故选:C

点评 本考查了数列的递推关系式的运用,裂项的方法求解数列的和,考查的解题思想较多,但是运算量不大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.
十六进制01234567
十进制01234567
十六进制89ABCDEF
十进制89101112131415
例如,用十六进制表示E+D=1B,则A×C=(  )
A.6EB.78C.5FD.C0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.证明:${(x-\frac{1}{x})^{2n}}$的展开式中的中间一项是${(-2)^n}\frac{1×3×5×…×(2n-1)}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若 (2x-1)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2017}}}}{{{2^{2017}}{a_1}}}$=(  )
A.$\frac{1}{2017}$B.$-\frac{1}{2017}$C.$\frac{1}{4034}$D.$-\frac{1}{4034}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合M={(x,y)|y=$\sqrt{9-{x}^{2}}$},N={(x,y)|y=x+b},且M∩N=∅,则b 的取值范围是(-∞,-3)∪(3$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在下列区间中,函数$f(x)=lnx-\frac{2}{x}$的零点所在大致区间为(  )
A..(1,2)B..(2,3)C..(3,4)D.(e,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}为等差数列,前n项和为Sn,若${a_2}+{a_5}+{a_8}=\frac{π}{4}$,则cosS9=(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=2sinx在点$x=\frac{π}{3}$处的导数是(  )
A.-1B.1C.0D.2

查看答案和解析>>

同步练习册答案