| A. | $\frac{2013}{2014}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{1}{2015}$ |
分析 直接利用给出的定义得到$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,整理得到Sn=2n2+n.分n=1和n≥2求出数列{an}的通项,验证n=1时满足,所以数列{an}的通项公式可求;再利用裂项求和方法即可得出.
解答 解:由已知定义,得到$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+1}$,
∴a1+a2+…+an=n(2n+1)=Sn,
即Sn=2n2+n.
当n=1时,a1=S1=3.
当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时也成立,
∴an=4n-1;
∵bn=$\frac{{a}_{n}+1}{4}$=n,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2015}{b}_{2016}}$=$\frac{2015}{2016}$,
故选:C
点评 本考查了数列的递推关系式的运用,裂项的方法求解数列的和,考查的解题思想较多,但是运算量不大,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}+\frac{3}{5}i$ | B. | $-\frac{4}{5}-\frac{3}{5}i$ | C. | $-\frac{4}{25}+\frac{3}{25}i$ | D. | $-\frac{4}{25}-\frac{3}{25}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 十六进制 | 8 | 9 | A | B | C | D | E | F |
| 十进制 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| A. | 6E | B. | 78 | C. | 5F | D. | C0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2017}$ | B. | $-\frac{1}{2017}$ | C. | $\frac{1}{4034}$ | D. | $-\frac{1}{4034}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | .(1,2) | B. | .(2,3) | C. | .(3,4) | D. | (e,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com