精英家教网 > 高中数学 > 题目详情
9.已知{an}为等差数列,前n项和为Sn,若${a_2}+{a_5}+{a_8}=\frac{π}{4}$,则cosS9=(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 根据等差数列的性质,a2+a8=2a5,而a1+a9=a2+a8,即可求出S9,可得答案.

解答 解:∵{an}为等差数列,
a2+a8=2a5,而a1+a9=a2+a8
∵${a_2}+{a_5}+{a_8}=\frac{π}{4}$,
∴$3{a}_{5}=\frac{π}{4}$,
则${a}_{5}=\frac{π}{12}$.
∴a1+a9=a2+a8=$\frac{π}{6}$.
S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=$\frac{3π}{4}$.
那么:cosS9=cos$\frac{3π}{4}$=$-\frac{\sqrt{2}}{2}$.
故选:A.

点评 本题考查了等差数列的性质的运用,考查了等差数列的前n项和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.复数z满足z=$\overline{z}$+$\frac{1+i}{1-i}$,其中$\overline{z}$为z的共轭复数,则z的虚部是(  )
A.1B.iC.$\frac{1}{2}$D.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2015}{b}_{2016}}$=(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)的导函数f′(x)满足关系式f(x)=x2+2xf′(2)-lnx,则f′(2)的值为(  )
A.-3.5B.3.5C.-4.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,已知命题p:$\overrightarrow{a}$=$\overrightarrow{b}$是$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若角α的终边在直线y=-2x上,则sin α等于(  )
A.±$\frac{1}{5}$B.±$\frac{\sqrt{5}}{5}$C.±$\frac{2\sqrt{5}}{5}$D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数有(  )
A.12种B.24种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在长方体ABCDA1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有3个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用0,1,2,3,4,5这6个数,能组成几个没有重复数字的四位偶数(  )
A.18B.156C.192D.360

查看答案和解析>>

同步练习册答案