分析 根据二项展开式的通项公式,写出并化简展开式的中间一项即可.
解答 证明:${(x-\frac{1}{x})^{2n}}$的展开式共有2n+1项,展开式的中间一项是:
Tn+1=${C}_{2n}^{n}$•xn•${(-\frac{1}{x})}^{n}$
=(-1)n•${C}_{2n}^{n}$
=(-1)n•$\frac{(2n)!}{n!•n!}$
=(-1)n•$\frac{{2}^{n}•n!•1×3×5×…×(2n-1)}{n!•n!}$
=(-2)n•$\frac{1×3×5×…×(2n-1)}{n!}$.
点评 本题考查了二项展开式的通项公式与应用问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}i$ | B. | $\frac{1}{2}i$ | C. | $-\frac{3}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | i | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 超市 | A | B | C | D | E | F | G |
| 广告费支出xi | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
| 销售额yi | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2013}{2014}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{1}{2015}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3.5 | B. | 3.5 | C. | -4.5 | D. | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com