精英家教网 > 高中数学 > 题目详情
15.若 (2x-1)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2017}}}}{{{2^{2017}}{a_1}}}$=(  )
A.$\frac{1}{2017}$B.$-\frac{1}{2017}$C.$\frac{1}{4034}$D.$-\frac{1}{4034}$

分析 利用赋值法,令x=0求得a0,令x=$\frac{1}{2}$求得$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,再利用二项展开式的通项公式求出a1,从而求出$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2017}}}}{{{2^{2017}}{a_1}}}$的值.

解答 解:(2x-1)2017=a0+a1x+a2x2+…+a2017x2017中,
令x=0,可得-1=a0
令x=$\frac{1}{2}$,可得0=-1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=1;
又(2x-1)2017展开式中,通项公式为:
Tr+1=${C}_{2017}^{r}$•(2x)2017-r•(-1)r
令2017-r=1,解得r=2016;
∴(2x-1)2017展开式中,含x项的系数为:
a1=2${C}_{2017}^{2016}$=4034,
∴$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2017}}}}{{{2^{2017}}{a_1}}}$=$\frac{1}{{a}_{1}}$=$\frac{1}{4034}$.
故选:C.

点评 本题考查了二项式定理的应用问题,也考查了推理能力与计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在如图所示的程序框图中,若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,则输出的结果是(  )
A.16B.8C.216D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.阅读如图所示的程序框图,输入的s值为(  )
A.0B.$1+\sqrt{2}$C.$1+\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求值:
(1)${[(-1+i)•{i^{100}}+{(\frac{1-i}{1+i})^5}]^{2017}}-{(\frac{1+i}{{\sqrt{2}}})^{20}}$
(2)$\int_{-1}^1{[3tanx+sinx-2{x^3}}+\sqrt{16-{{(x-1)}^2}}]dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\frac{1-tanα}{1+tanα}$=2+$\sqrt{3}$,则tan($\frac{π}{4}$+α)等于(  )
A.2+$\sqrt{3}$B.1C.2-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{2015}{b}_{2016}}$=(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC的三内角A,B,C所对边的长分别是a,b,c,若$\frac{sinB-sinA}{sinC}=\frac{{\sqrt{2}a+c}}{a+b}$,则角B的大小为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,已知命题p:$\overrightarrow{a}$=$\overrightarrow{b}$是$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,复数z的对应点为(1,-1),则z2=(  )
A.$\sqrt{2}$B.$-\sqrt{2}$C.2iD.-2i

查看答案和解析>>

同步练习册答案