精英家教网 > 高中数学 > 题目详情
5.在如图所示的程序框图中,若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,则输出的结果是(  )
A.16B.8C.216D.28

分析 框图在输入a=-16后,对循环变量a的大小进行判断,直至满足条件a>4算法结束.

解答 解:模拟执行程序框图,可得
a=-16≤0,
执行循环体,b=log${\;}_{\frac{1}{2}}$16=14<0,a=log${\;}_{\frac{1}{2}}$4=-2<0,
不满足条件a>4,执行循环体,b=log${\;}_{\frac{1}{2}}$2=-1<0,a=log${\;}_{\frac{1}{2}}$1=0,
不满足条件a>4,执行循环体,b=2°=1>0,a=21=2,
不满足条件a>4,执行循环体,b=22=4>0,a=24=16,
满足条件a>4,退出循环,输出a的值为16.
故选:A.

点评 本题考查了程序框图,考查了循环结构中的直到型循环,直到型循环是先执行后判断,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若不等式$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10≤0\\ x+y-8≤0\end{array}\right.$,所表示的平面区域内存在点(x0,y0),使得x0+ay0+2≤0成立,则实数a的取值范围是(  )
A.a≤-1B.a<-1C.a>1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cosx•tan(x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$.
(Ⅰ)求函数f(x)的定义域和最小正周期;
(Ⅱ)求函数f(x)在x∈[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.
(2)若x=3是f(x)的极值点,求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.执行如图所示的程序框图,当输出i的值是4时,输入的整数n的最大值是23.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(2-$\frac{1}{x}$)(1-2x)4的展开式中x2的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平面内的小圆形按照如图中的规律排列,每个图中的圆的个数构成一个数列{an},则系列结论正确的是(  )
①a5=15;                               
②数列{an}是一个等差数列;
③数列{an}是一个等比数列;
④数列{an}的递推关系是an=an-1+n(n∈N*).
A.①②④B.①③④C.①②D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若 (2x-1)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2017}}}}{{{2^{2017}}{a_1}}}$=(  )
A.$\frac{1}{2017}$B.$-\frac{1}{2017}$C.$\frac{1}{4034}$D.$-\frac{1}{4034}$

查看答案和解析>>

同步练习册答案