精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图,当输出i的值是4时,输入的整数n的最大值是23.

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.

解答 解:模拟程序的运行,可得
S=0,T=1,i=1
S=1≤n,T=2,S=3,i=2
S=5≤n,T=4,S=9,i=3
S=12≤n,T=8,S=n,i=4
S=24>n,输出i=4,
故输入的整数n的最大值是23.
故答案为:23.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.计算:cos25°sin55°-sin25°cos55°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A、B、C的对边分别为a,b,c,若cosA=$\frac{2\sqrt{2}}{3}$,bcosC+ccosB=2,则△ABC外接圆的面积为(  )
A.B.C.D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若点P在曲线y=x3-x+1上移动,设点P处的切线的倾斜角为α,则α的取值范围是[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2
(Ⅰ)记$F(x)=\frac{f(x)}{g(x)}$,讨论函数F(x)的单调性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的程序框图中,若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,则输出的结果是(  )
A.16B.8C.216D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在平行四边形ABCD中,AB=1,AD=2,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则$\overrightarrow{EF}•\overrightarrow{FG}+\overrightarrow{GH}•\overrightarrow{HE}$=(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\frac{2}{x-lnx-1}$,则y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\frac{1-tanα}{1+tanα}$=2+$\sqrt{3}$,则tan($\frac{π}{4}$+α)等于(  )
A.2+$\sqrt{3}$B.1C.2-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案