精英家教网 > 高中数学 > 题目详情
8.若点P在曲线y=x3-x+1上移动,设点P处的切线的倾斜角为α,则α的取值范围是[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π).

分析 求函数的导数,利用导数的几何意义,结合正切函数的图象和性质即可得到结论.

解答 解:∵y=x3-x+1,
∴y′=3x2-1≥-1,
∴tanα≥-1,
过P点的切线的倾斜角的取值范围是α∈[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π),
故答案为:[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π).

点评 本题主要考查导数的几何意义以及正切函数的图象和性质,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,已知a2=2,a5=16.设S2n为该数列的前2n项和,Tn为数列{an2}的前n项和.若S2n=tTn,则实数t的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinx(${\sqrt{3}cosx-sinx}$).
(1)求函数f(x)在(${-\frac{π}{6},\frac{π}{3}}$)上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cosx•tan(x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$.
(Ⅰ)求函数f(x)的定义域和最小正周期;
(Ⅱ)求函数f(x)在x∈[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.利用定积分的定义计算下列积分的值:${∫}_{0}^{4}$(2x+3)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.
(2)若x=3是f(x)的极值点,求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.执行如图所示的程序框图,当输出i的值是4时,输入的整数n的最大值是23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(2-$\frac{1}{x}$)(1-2x)4的展开式中x2的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若sinx+cosx=$\frac{1}{5}$,0<x<π,则tanx的值是(  )
A.$\frac{4}{3}或-\frac{4}{3}$B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}或-\frac{3}{4}$

查看答案和解析>>

同步练习册答案