精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2sinx(${\sqrt{3}cosx-sinx}$).
(1)求函数f(x)在(${-\frac{π}{6},\frac{π}{3}}$)上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

分析 (1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,x∈(${-\frac{π}{6},\frac{π}{3}}$)上时,求出内层函数的取值范围,结合三角函数的图象和性质,即得到f(x)的值域.
(2)根据f(C)=0求出角C,sinB=sinAsinC=sin(A+C)利用和与差公式,即可求tanA的值.

解答 解:函数f(x)=2sinx(${\sqrt{3}cosx-sinx}$).
化简可得:f(x)=2$\sqrt{3}$sinxcosx-2sin2x=$\sqrt{3}$sin2x+cos2x-1=2sin(2x+$\frac{π}{6}$)-1.
(1)∵x∈(${-\frac{π}{6},\frac{π}{3}}$)上时,
可得:2x+$\frac{π}{6}$∈($-\frac{π}{6}$,$\frac{5π}{6}$).
∴$-\frac{1}{2}$<sin(2x+$\frac{π}{6}$)≤1
故得函数f(x)在(${-\frac{π}{6},\frac{π}{3}}$)上的值域为(-2,1].
(2)∵f(x)=2sin(2x+$\frac{π}{6}$)-1,
∵f(C)=0,
即sin(2C+$\frac{π}{6}$)=$\frac{1}{2}$.
∵0<C<π,
∴2C+$\frac{π}{6}$=$\frac{5π}{6}$.
得:C=$\frac{π}{3}$.
∵sinB=sinAsinC,
可得sin(A+C)=sinAsinC,
∴sin(A+$\frac{π}{3}$)=sinAsin$\frac{π}{3}$.
得:($\sqrt{3}-1$)sinA=$\sqrt{3}$cosA.
那么:tanA=$\frac{\sqrt{3}}{\sqrt{3}-1}$=$\frac{\sqrt{3}+3}{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若$?x∈[{\frac{1}{e},e}]$,f(x)>g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算:cos25°sin55°-sin25°cos55°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=$\frac{a}{b}$.
(1)求B;
(2)设CM是角C的平分线,且CM=1,a=$\frac{3}{4}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某次数学测验,12名同学所得分数的茎叶图如图,则这些分数的中位数是(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x+y)(x-y)7点展开式中x4y4的系数为0.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A、B、C的对边分别为a,b,c,若cosA=$\frac{2\sqrt{2}}{3}$,bcosC+ccosB=2,则△ABC外接圆的面积为(  )
A.B.C.D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若点P在曲线y=x3-x+1上移动,设点P处的切线的倾斜角为α,则α的取值范围是[0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\frac{2}{x-lnx-1}$,则y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案