精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若$?x∈[{\frac{1}{e},e}]$,f(x)>g(x)恒成立,求实数m的取值范围.

分析 (Ⅰ)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;
(Ⅱ)问题转化为$2m<{({lnx+\frac{1}{x}})_{min}}$,构造函数$h(x)=lnx+\frac{1}{x}$,$x∈[{\frac{1}{e},e}]$,根据函数的单调性求出m的范围即可.

解答 解:(Ⅰ)$f′(x)=1•lnx+x•\frac{1}{x}=lnx+1$,…(2分)
所以f′(1)=1,又f(1)=0,
所以函数f(x)在x=1处的切线方程是:
y-0=1×(x-1),即y=x-1.   …(5分)
(Ⅱ)由f(x)>g(x)得,$lnx+\frac{1}{x}>2m$,
于是$2m<{({lnx+\frac{1}{x}})_{min}}$. …(7分)
构造函数$h(x)=lnx+\frac{1}{x}$,$x∈[{\frac{1}{e},e}]$
令$h′(x)=\frac{1}{x}-\frac{1}{x^2}>0$,得x>1,
所以函数h(x)在$({\frac{1}{e},1})$上单调递减,(1,e)上单调递增,
h(x)min=h(1)=1,…(10分)
于是,2m<1,
所以,实数m的取值范围是$(-∞,\frac{1}{2})$. …(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在R上存在导函数f′(x),?x∈R,都有f(x)+f(-x)=x2,在x>0时,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(cosθ,2),满足$\overrightarrow{a}∥\overrightarrow{b}$,其中θ∈(0,$\frac{π}{2}$)
(1)求sinθ和cosθ)的值;
(2)若cos(θ+φ)=-$\frac{2\sqrt{2}}{3}$(0<φ<$\frac{π}{2}$),求cos(φ+$\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间(0,2)内随机取出两个数x,y,则1,x,y能作为三角形三条边的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设当x=θ时,函数f(x)=2sinx-cosx取得最大值,则sinθ=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的导数:
(1)y=(1-$\sqrt{x}$)(1+$\frac{1}{\sqrt{x}}$)
 (2)y=$\frac{lnx}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知在平行四边形ABCD中,点E是边BC的中点.在边AB上任取一点F,则△ADF与△BFE的面积之比不小于1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,已知a2=2,a5=16.设S2n为该数列的前2n项和,Tn为数列{an2}的前n项和.若S2n=tTn,则实数t的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinx(${\sqrt{3}cosx-sinx}$).
(1)求函数f(x)在(${-\frac{π}{6},\frac{π}{3}}$)上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

查看答案和解析>>

同步练习册答案