分析 (1)化简,根据求导公式,即可求得函数的导数,
(2)根据导数的运算法则,即可求得函数的导数.
解答 解:(1)y=(1-$\sqrt{x}$)(1+$\frac{1}{\sqrt{x}}$)=(1-$\sqrt{x}$)($\frac{\sqrt{x}+1}{\sqrt{x}}$)=$\frac{1-x}{\sqrt{x}}$=$\frac{1}{\sqrt{x}}$-$\sqrt{x}$,
则y′=($\frac{1}{\sqrt{x}}$)′-($\sqrt{x}$)′=-$\frac{1}{2}$${x-}^{\frac{3}{2}}$-$\frac{1}{2}$${x}^{-\frac{1}{2}}$,
∴y′=-$\frac{1}{2}$${x-}^{\frac{3}{2}}$-$\frac{1}{2}$${x}^{-\frac{1}{2}}$,
(2)y=$\frac{lnx}{x}$.则y′=$\frac{(lnx)′x-(x)′lnx}{{x}^{2}}$=$\frac{1-lnx}{{x}^{2}}$,
∴y′=$\frac{1-lnx}{{x}^{2}}$,
点评 本题考查函数求导法则,导数的运算法则,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{13}+2$ | B. | $2+\sqrt{3}i$ | C. | $\sqrt{13}+\sqrt{2}$ | D. | $\sqrt{13}+4$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.35 | B. | 0.32 | C. | 0.55 | D. | 0.68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{30}}}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 变量x | 2.7 | 2.9 | 3 | 3.2 | 4.2 |
| 变量y | 46 | 49 | m | 53 | 55 |
| A. | 50 | B. | 51 | C. | 52 | D. | 53 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com