精英家教网 > 高中数学 > 题目详情
4.设当x=θ时,函数f(x)=2sinx-cosx取得最大值,则sinθ=$\frac{2\sqrt{5}}{5}$.

分析 利用辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,根据当x=θ时f(x)取得最大值,建立关系.利用和与差公式或者诱导公式即可得解.

解答 解:函数f(x)=2sinx-cosx
化简可得:$f(x)=\sqrt{5}({sinx•\frac{2}{{\sqrt{5}}}-cosx•\frac{1}{{\sqrt{5}}}})=\sqrt{5}sin({x-{θ_0}})$,
(其中$cos{θ_0}=\frac{2}{{\sqrt{5}}},sin{θ_0}=\frac{1}{{\sqrt{5}}},{θ_0}$是锐角),
由题意:sin(x-θ0)=1.
法一:sinθ=sin[(θ-θ0)+θ0]=sin(θ-θ0)cosθ0+cos(θ-θ0)sinθ0=$1×\frac{2}{{\sqrt{5}}}+0×\frac{1}{{\sqrt{5}}}=\frac{{2\sqrt{5}}}{5}$.
法二:∵sin(x-θ0)=1.
∴$θ-{θ_0}=\frac{π}{2}+2kπ,k∈Z$,$sinθ=sin({{θ_0}+\frac{π}{2}+2kπ})=cos{θ_0}$=$\frac{{2\sqrt{5}}}{5}$.
故答案为:$\frac{2\sqrt{5}}{5}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知f(α)=$\frac{{sin(π-α)cos(π-α)cos(\frac{3π}{2}+α)}}{{cos(\frac{π}{2}+α)sin(π+α)}}$,若α为第二象限角,且$cos(α-\frac{π}{2})=\frac{2}{5}$,求f(α)的值;
(2)已知tanα=3,求2sin2α+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.空间中两点A(1,0,1),B(2,1,-1),则|AB|的值为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,对一切n∈N*,点(n,$\frac{{S}_{n}}{n}$)都在函数f(x)=x+$\frac{{a}_{n}}{2x}$的图象上.
(1)求a1,a2,a3的值,猜想an的表达式,并用数学归纳法证明;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为
(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);
(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);
(a21),(a22,a23),(a24,a25,a26),(a27,a28,a29,a30);…
分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b2018-b1314的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图,则该几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若$?x∈[{\frac{1}{e},e}]$,f(x)>g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在R上定义运算?:x?y=$\frac{x}{2-y}$,若关于x的不等式:(x-a)?(x+1-a)>0的解集是集合{x|-2≤x≤2}的子集,则实数a的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线C:y2=4x的焦点F作直线l交C于A,B两点,则|AF|+2•|BF|的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某次数学测验,12名同学所得分数的茎叶图如图,则这些分数的中位数是(  )
A.80B.81C.82D.83

查看答案和解析>>

同步练习册答案