精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=$\frac{a}{b}$.
(1)求B;
(2)设CM是角C的平分线,且CM=1,a=$\frac{3}{4}$,求b.

分析 (1)由已知及余弦定理可得$\frac{a}{b}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$.可得a2+c2=b2,由勾股定理可求B=90°.
(2)在Rt△MBC中,由三角函数的定义可求cos∠BCM,利用二倍角的余弦函数公式可求cos∠ACB,可得$\frac{3}{4b}$=2×($\frac{3}{4}$)2-1,即可解得b的值.

解答 (本题满分为12分)
解:(1)∵由已知及余弦定理可得:cosC=$\frac{a}{b}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$.
∴a2+c2=b2
∴B=90°…4分
(2)在Rt△MBC中,cos∠BCM=$\frac{\frac{3}{4}}{1}$=$\frac{3}{4}$,…6分
∴cos∠ACB=2cos2∠BCM-1,…8分
∴$\frac{3}{4b}$=2×($\frac{3}{4}$)2-1,…10分
∴解得:b=6…12分

点评 本题主要考查了余弦定理,勾股定理,三角函数的定义,二倍角的余弦函数公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在区间(0,2)内随机取出两个数x,y,则1,x,y能作为三角形三条边的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,已知a2=2,a5=16.设S2n为该数列的前2n项和,Tn为数列{an2}的前n项和.若S2n=tTn,则实数t的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10≤0\\ x+y-8≤0\end{array}\right.$,所表示的平面区域内存在点(x0,y0),使得x0+ay0+2≤0成立,则实数a的取值范围是(  )
A.a≤-1B.a<-1C.a>1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)证明方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;
(2)记max{a,b}表示a,b两个数中的较大者,方程f(x)=g(x)在区间(1,2)内的实数根为x0,m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)内有两个不等的实根x1,x2(x1<x2),判断x1+x2与2x0的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+a|+|x-2|.
(1)若f(x)的最小值为4,求实数a的值;
(2)若-1≤x≤0时,不等式f(x)≤|x-3|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinx(${\sqrt{3}cosx-sinx}$).
(1)求函数f(x)在(${-\frac{π}{6},\frac{π}{3}}$)上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cosx•tan(x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$.
(Ⅰ)求函数f(x)的定义域和最小正周期;
(Ⅱ)求函数f(x)在x∈[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(2-$\frac{1}{x}$)(1-2x)4的展开式中x2的系数为80.

查看答案和解析>>

同步练习册答案