分析 (1)求出函数的导数,通过解关于导函数的不等式,得到函数的单调性,结合零点存在定理证出结论即可;
(2)问题转化为证$\frac{{x}_{1}}{{e}^{{x}_{1}}}$<(2x0-x1)ln(2x0-x1),(1<x1<x0<2),(*),设H(x)=$\frac{x}{{e}^{x}}$-(2x0-x)ln(2x0-x),(1<x<x0<2),根据函数的单调性证明即可.
解答 证明:(1)令F(x)=f(x)-g(x),
则F(x)=xlnx-$\frac{x}{{e}^{x}}$,定义域是(0,+∞),
F′(x)=1+lnx+$\frac{x-1}{{e}^{x}}$,
x>1时,F′(x)>0,∴F(x)在(1,2)递增,
又F(1)=-$\frac{1}{e}$<0,F(2)=2ln2-$\frac{2}{{e}^{2}}$>0,
而F(x)在(1,+∞)上连续,
根据零点存在定理可得:F(x)=0在区间(1,2)有且只有1个实根,
即方程f(x)=g(x)在区间(1,2)内有且仅有唯一实根;
(2)x1+x2<2x0,
证明过程如下:
显然:m(x)=$\left\{\begin{array}{l}{\frac{x}{{e}^{x}},1<x{<x}_{0}}\\{xlnx,x{>x}_{0}}\end{array}\right.$,
当1<x<x0时,m(x)=$\frac{x}{{e}^{x}}$,m′(x)=$\frac{1-x}{{e}^{x}}$<0,
故m(x)单调递减;
当x>x0时,m(x)=xlnx,m′(x)=1+lnx>0,m(x)递增,
要证x1+x2<2x0,
即证x2<2x0-x1,
由(1)知x1<x0<x2,g(x1)=f(x2)=n,
故即证f(x2)<f(2x0-x1),
即证g(x1)<f(2x0-x1),
即证$\frac{{x}_{1}}{{e}^{{x}_{1}}}$<(2x0-x1)ln(2x0-x1),(1<x1<x0<2),(*),
设H(x)=$\frac{x}{{e}^{x}}$-(2x0-x)ln(2x0-x),(1<x<x0<2),
H′(x)=$\frac{1-x}{{e}^{x}}$+ln(2x0-x)+1,
∵1<x<x0<2,
∴$\frac{1-x}{{e}^{x}}$+1>0,ln(2x0-x)>0,
∴H′(x)>0,
∴H(x)在(1,x0)递增,
即H(x)<H(x0)=0,故(*)成立,
故x1+x2<2x0成立.
点评 本题考查了函数的单调性问题,考查不等式的证明以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 无数个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 9π | D. | 36π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{3}{4}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com