精英家教网 > 高中数学 > 题目详情
1.在△ABC中,若sinA+$\sqrt{2}$sinB=2sinC,则cosC的最小值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 根据正弦、余弦定理,利用基本不等式即求得结论.

解答 解:△ABC中,sinA+$\sqrt{2}$sinB=2sinC,
由正弦定理得a+$\sqrt{2}$b=2c,
∴c=$\frac{1}{2}$(a+$\sqrt{2}$b);
由余弦定理得cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$
=$\frac{{a}^{2}{+b}^{2}-{\frac{1}{4}(a+\sqrt{2}b)}^{2}}{2ab}$
=$\frac{{\frac{3}{4}a}^{2}+{\frac{1}{2}b}^{2}-\frac{\sqrt{2}}{2}ab}{2ab}$
=$\frac{3a}{8b}$+$\frac{b}{4a}$-$\frac{\sqrt{2}}{4}$≥2$\sqrt{\frac{3a}{8b}•\frac{b}{4a}}$-$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
当且仅当$\frac{3a}{8b}$=$\frac{b}{4a}$,即a=$\frac{\sqrt{6}}{3}$b时,取等号;
∴$\frac{\sqrt{6}-\sqrt{2}}{4}$≤cosC<1,
即cosC的最小值是$\frac{\sqrt{6}-\sqrt{2}}{4}$.
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

点评 本题主要考查了正弦、余弦定理的应用问题,结合基本不等式的性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在区间(0,2)内随机取出两个数x,y,则1,x2,y能作为三角形三条边的概率为(  )
A.$\frac{{\sqrt{3}+1}}{4}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{3-\sqrt{3}}}{4}$D.$\frac{{3-\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+a|+|x-2|.
(1)若f(x)的最小值为4,求实数a的值;
(2)若-1≤x≤0时,不等式f(x)≤|x-3|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.$\frac{1}{2}$B.-3C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cosx•tan(x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$.
(Ⅰ)求函数f(x)的定义域和最小正周期;
(Ⅱ)求函数f(x)在x∈[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x≥y>0,若存在实数a,b满足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.则$\frac{y}{x}$的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.
(2)若x=3是f(x)的极值点,求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.
十六进制01234567
十进制01234567
十六进制89ABCDEF
十进制89101112131415
例如,用十六进制表示E+D=1B,则A×C=(  )
A.6EB.78C.5FD.C0

查看答案和解析>>

同步练习册答案