精英家教网 > 高中数学 > 题目详情
15.如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的等边三角形,点A1在底面ABC上的投影D恰好为BC的中点,AA1与平面ABC所成角为45°,则该三棱柱的体积为(  )
A.1B.$\sqrt{2}$C.3D.$\sqrt{10}$

分析 由已知可知,A1D为三棱柱的高,且求得${A}_{1}D=\sqrt{3}$,再求出底面三角形ABC的面积,则体积可求.

解答 解:如图,△ABC是边长为2的等边三角形.

∵D是点A1在底面ABC上的投影,∴A1D⊥底面ABC,
又D是BC中点,连接AD,则AD=$\sqrt{3}$,
又∵AA1与平面ABC所成角为45°,即∠A1AD=45°,
∴${A}_{1}D=AD=\sqrt{3}$,
∴${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}=\frac{1}{2}×2×\sqrt{3}×\sqrt{3}=3$.
故选:C.

点评 本题考查线面垂直的判定和性质,考查了空间想象能力和思维能力,训练了多面体体积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知tan(x+$\frac{π}{2}$)=5,则$\frac{1}{sinxcosx}$=(  )
A.$\frac{26}{5}$B.-$\frac{26}{5}$C.±$\frac{26}{5}$D.-$\frac{5}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x≥y>0,若存在实数a,b满足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.则$\frac{y}{x}$的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{b}{a}cosC=({3-\frac{c}{a}})cosB$.
(1)求sinB的值;
(2)若D为AC的中点,且BD=1,求△ABD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在梯形ABCD中,∠ADC=$\frac{π}{2}$,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,点E在BP上,且EB=2PE.
(1)求证:DP∥平面ACE;
(2)求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.现有如表样本数据:
x2324252627
y20.923.125.126.929
经计算可知y对x呈线性相关关系:
试求:(1)线性回归方程y=bx+a;
            (2)估计x为何值时,y=100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合M={(x,y)|y=$\sqrt{9-{x}^{2}}$},N={(x,y)|y=x+b},且M∩N=∅,则b 的取值范围是(-∞,-3)∪(3$\sqrt{2}$,+∞).

查看答案和解析>>

同步练习册答案