精英家教网 > 高中数学 > 题目详情
5.已知tan(x+$\frac{π}{2}$)=5,则$\frac{1}{sinxcosx}$=(  )
A.$\frac{26}{5}$B.-$\frac{26}{5}$C.±$\frac{26}{5}$D.-$\frac{5}{26}$

分析 由已知利用诱导公式求得tanx,把1用sin2x+cos2x代替,然后化弦为切得答案.

解答 解:∵tan(x+$\frac{π}{2}$)=5,∴cotx=-5,则tanx=-$\frac{1}{5}$,
$\frac{1}{sinxcosx}$=$\frac{si{n}^{2}x+co{s}^{2}x}{sinxcosx}=\frac{1+ta{n}^{2}x}{tanx}=\frac{1+\frac{1}{25}}{-\frac{1}{5}}=-\frac{26}{5}$.
故选:B.

点评 本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若$tanθ=\frac{1}{2}$,则cos2θ+sin2θ=(  )
A.$\frac{4}{5}$B.$\frac{6}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}满足:an+1=2an+2,a1=2.
(Ⅰ)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
(Ⅱ)证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}≤1-\frac{1}{2^n}$,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC中,角A,B,C对边分别为a,b,c,C=120°,a=2b,则tanA=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在某小学体育素质达标运动会上,对10名男生和10名女生在一分钟跳绳的次数进行统计,得到如下所示茎叶图:
(1)已知男生组中数据的中位数为125,女生组数据的平均数为124,求x,y的值;
(2)现从这20名学生中任意抽取一名男生和一名女生对他们进行训练,记一分钟内跳绳次数不低于115且不超过125的学生被选上的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴AB为的长为6,离心率为$\frac{1}{3}$.
(1)求椭圆E方程;
(2)过椭圆E的右焦点F的直线与椭圆E交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1-S2取得最大值时,求S1+S2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=log2(x-1)-$\frac{1}{{\sqrt{2-x}}}$的定义域为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则(a$\sqrt{x}$+$\frac{1}{x}$)6展开式中的常数项为240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的等边三角形,点A1在底面ABC上的投影D恰好为BC的中点,AA1与平面ABC所成角为45°,则该三棱柱的体积为(  )
A.1B.$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案