分析 由已知利用等比数列的前n项和公式求得$\frac{{a}_{1}(1+{q}^{7})}{1+q}=3$,进一步由等比数列的前n项和求得a1-a2+a3-a4+a5-a6+a7的值.
解答 解:∵a1+a2+a3+…+a7=6,a12+a22+a32+…+a72=18,等比数列{an}的公比q≠1,
∴$\frac{{a}_{1}(1-{q}^{7})}{1-q}=6$,$\frac{{{a}_{1}}^{2}(1-{q}^{14})}{1-{q}^{2}}=18$,
∴$\frac{{a}_{1}(1+{q}^{7})}{1+q}=3$,
则a1-a2+a3-a4+a5-a6+a7=$\frac{{a}_{1}(1+{q}^{7})}{1-(-q)}=\frac{{a}_{1}(1+{q}^{7})}{1+q}=3$.
故答案为:3.
点评 本题考查了等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}+i$ | B. | $\sqrt{2}-i$ | C. | $1+\sqrt{2}i$ | D. | $1-\sqrt{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,e) | B. | (0,1),(1,e) | C. | (e,+∞) | D. | (-∞,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x<0} | B. | {x|0≤x<1} | C. | {x|1≤x≤4} | D. | {x|1<x≤4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com