精英家教网 > 高中数学 > 题目详情
5.log30.3,30.3,0.33按从小到大排列的顺序是log30.3<0.33<30.3

分析 利用对数与指数的性质,结合特殊值1与0,进行比较即可.

解答 解:∵y=log3x 是单调增函数,当0<x<1时,y<0,
∴log30.3<0;
又y=3x是单调增函数,当x>0时,y>1,
∴30.3>1;
又y=0.3x是单调减函数,当x>0时,0<y<1,
∴0<0.33<1;
∴log30.3<0.33<30.3
故答案为;log30.3<0.33<30.3

点评 本题考查了利用对数函数与指数函数的图象与性质进行比较大小的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(实验班)已知数列{an}满足a1=2,对于任意的n∈N+都有an>0,且(n+1)an2+anan+1-nan+12=0,
(1)求数列{an}的通项an以及它的前n项和Sn
(2)令cn=$\frac{4}{{a}_{2n-1}{a}_{2n+1}}$,求{cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解答下列问题.
(1)若f(x+1)=2x2+1,求f(x);
(2)若2f(x)-f(-x)=x+1,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若关于x方程32x-2a•3x+4=0有两个不同的正根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正四棱锥(底面为正方形的四棱锥)S-ABCD侧棱长与底面边长相等,E为SC中点,BE与SA所成角的余弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在Rt△AOB中,∠OAB=30°,斜边AB=4,将△AOB绕直线AO旋转得到△AOC,且二面角B-AO-C是直二面角,动点D在边AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当D为AB的中点时,求异面直线AO与CD所成角的正切值;
(Ⅲ)求CD与平面AOB所成角的正切值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,$AD=CD=\sqrt{7}$,$PA=\sqrt{3}$,G为线段PC上的点,∠ABC=120°
(Ⅰ)证明:BD⊥面PAC;
(Ⅱ)求PC与面PBD所成的角;
(Ⅲ)若G满足PC⊥面GBD,求$\frac{PG}{GC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知棱长为2,各面均为等边三角形的四面体,则其表面积为(  )
A.12B.$2\sqrt{3}$C.$4\sqrt{3}$D.$\frac{4}{3}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=2{cos^2}\frac{x}{2}+\sqrt{3}sinx$.
(Ⅰ)求函数f(x)的最大值,并写出取得最大值时相应的x的取值集合;
(Ⅱ)若$tan\frac{α}{2}=\frac{1}{2}$,求f(α)的值.

查看答案和解析>>

同步练习册答案