精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn=-an-(数学公式n-1+2.
(1)求数列{an}的通项公式;
(2)令cn=数学公式an,Tn为数列{cn}的前n项和,试比较Tn数学公式的大小.

解:(1)由题意知a1=-a1-1+2,∴
当n≥2时,

,即2n•an=2n-1an-1+1,
设bn=2nan,则bn-bn-1=1,
∵b1=2a1=1,∴bn=1+(n-1)=n=2nan

(2)由(1)得
,①
=
①-②得
=
=

Tn-=
于是确定Tn的大小等价于比较2n与2n+1的大小,
由2<2×1+1,22<2×2+1,23>2×3+1,24>2×4+1,
可猜想当n≥3时,2n>2n+1,证明如下.
(1)当n=3时,23>2×3+1,猜想成立.
(2)假设当n=k时,猜想成立,即2k>2k+1.
当 n=k+1时,2k+1=2•2k>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)-1.
所以,当n=k+1时,猜想也成立.
综合(1)(2)可知,对一切n≥3的正整数,都有2n>2n+1.
∴当n=1,2时,Tn.当n≥3时,Tn
分析:(1)由题意知,所以.同眦可知2n•an=2n-1an-1+1,bn=2nan,则bn=1+(n-1)=n=2nan,由此可知
(2)由(1)得=,由错位相减法知.由此入手可证出当n=1,2时,Tn.当n≥3时,Tn
点评:本题考查数列的知识和不等式的证明,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案