精英家教网 > 高中数学 > 题目详情
10.已知数列{an},满足an+1=$\frac{1}{{1-{a_n}}}$,若a1=$\frac{1}{2}$,则a2016=(  )
A.-1B.2C.$\frac{1}{2}$D.1

分析 利用an+1=$\frac{1}{{1-{a_n}}}$,a1=$\frac{1}{2}$,可得:an+3=an.即可得出.

解答 解:∵an+1=$\frac{1}{{1-{a_n}}}$,a1=$\frac{1}{2}$,
∴a2=$\frac{1}{1-\frac{1}{2}}$=2,同理可得:a3=-1,a4=$\frac{1}{2}$,…,
∴an+3=an
则a2016=a3×671+3=a3=-1.
故选:A.

点评 本题考查了递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数y=x2+2x-1的顶点坐标是(  )
A.($\frac{1}{10}$,2)B.($\frac{1}{10}$,-2)C.(-1,-2)D.(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:当a>3时,关于x方程x2+$\frac{8}{x}$=a2+$\frac{8}{a}$有3个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(-1,-2).
(1)若表示向量4$\overrightarrow{a}$,-2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{c}$的有向线段首尾顺次相接能构成三角形,求向量$\overrightarrow{c}$的坐标;
(2)在(1)的条件下,若|λ$\overrightarrow{a}$+$\overrightarrow{c}$|=3$\sqrt{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an},a1=$\frac{1}{2}$,an+1=$\frac{{3{a_n}}}{{{a_n}+3}}$.
求:(1)写出a2,a3,a4,a5
(2)求出数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}中,a1=3,点(an,an+1)在直线y=x+3上.
(Ⅰ)求证数列{an}是等差数列,并求出数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}x,x>1\end{array}$,则f[f(-1)]=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式组$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面区域为Ω,若直线ax-y+a+1=0与Ω有公共点,则实数a的取值范围是[$\frac{1}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{y≤x}\end{array}\right.$z=x+ay(a>1)的最大值为3,则实数a=2.

查看答案和解析>>

同步练习册答案