精英家教网 > 高中数学 > 题目详情

某单位有三辆汽车参加某种事故保险,年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车每年最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额ξ的分布列.

(Ⅰ)    (Ⅱ)   见解析


解析:

:设Ak表示第k辆车在一年内发生此种事故,k=1,2,3.

由题意知A1A2A3相互独立,且PA1)=PA2)=PA3)=.

(1)该单位一年内获赔的概率为

1-P()=1-P()P()P()=1-.          (5分)

(2)ξ的所有可能值为0,9000,18000,27000.                     (6分)

P(ξ=0)=P()=P()P()P()=,       (7分)

P(ξ=9000)=P(A1)+P(A2)+P(A3)

=P(A1)P()P()+P()P(A2)P()+P()P()P(A3)

=,  (8分)

P(ξ=18000)=P(A1A2)+P(A1A3)+P(A2A3)

=P(A1)P(A2)P()+P(A1)P()P(A3)+P()P(A2)P(A3)

=,    (9分)

P(ξ=27000)=P(A1A2A3)=P(A1)P(A2)P(A3)=.          (10分)

综上知,ξ的分布列为

ξ

0

9000

18000

27000

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位有三辆汽车参加某种事故保险,年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车每年最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为
1
9
1
10
1
11
,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为
1
9
1
10
1
11
,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分别列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的车辆,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为0.1,0.2,0.4,且各车是否发生事故相互独立.求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司

缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元

的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率

分别为且各车是否发生事故相互独立,求一年内该单位在此保险中:

(1)获赔的概率;

(2)获赔金额的分别列与期望。

查看答案和解析>>

同步练习册答案