精英家教网 > 高中数学 > 题目详情
19.设f(x)=ax3+bx2+cx+d(a>0),则f(x)在R上为单调增函数的充要条件是(  )
A.b2-4ac≥0B.b>0,c>0C.b=0,c>0D.b2-3ac≤0

分析 先求出f′(x)=3ax2+2bx+c(a>0),函数f(x)在R上为增函数,判别式小于等于0,问题得以解决.

解答 解:∵f(x)=ax3+bx2+cx+d(a>0),
∴f′(x)=3ax2+2bx+c(a>0),
∵函数f(x)在R上为增函数
∴(2b)2-4×3ac≤0
即b2-3ac≤0,
故选:D.

点评 本题主要考查导数和函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程 ${(f(x))^2}+\frac{2}{3}af(x)+\frac{b}{3}=0$的不同实根个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图所示的伪代码,输出的结果是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若曲线$\frac{x^2}{1-k}+\frac{y^2}{1+k}=1$表示椭圆,则k的取值范围是(  )
A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC中,角A、B、C所对应的边分别a、b、c,已知cosC+$\frac{c}{b}$cosB=2,则$\frac{a}{b}$=(  )
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某设备的使用年限x与所支出的总费用y(万元)有如下的统计资料:
使用年限x1234
总费用y1.5233.5
由表中数据最小二乘法得线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.7,由此预测,当使用10年时,所支出的总费用约为5.5万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作⊙M的切线PA,切点是A.
(1)若t=0,|$\overrightarrow{MP}$|=$\sqrt{5}$,求直线PA的方程;
(2)若经过A,P,M三点的圆的圆心是D,求|$\overrightarrow{DO}$|的最小值;
(3)在(2)的条件下,$\overrightarrow{DO}$2的最小值为g(t),若在区间[-6,0]上任取一个数,求该数能使函数y=g(t)-$\frac{4}{5}$存在无穷多个零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:任意x>0,总有ex≥1,则?p为(  )
A.存在x≤0,使得 ex<1B.存在x>0,使得 ex<1
C.任意x>0,总有 ex<1D.任意x≤0,总有 ex<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若a=1,c=$\sqrt{3}$,角C=$\frac{π}{3}$,则角A=$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案