分析 由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2-12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.
解答 解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,
∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,
∴△=4a2-12b>0.解得x1=-$\frac{a}{3}$-$\frac{\sqrt{{a}^{2}-3b}}{3}$,x2=-$\frac{a}{3}$+$\frac{\sqrt{{a}^{2}-3b}}{3}$,
而方程 ${(f(x))^2}+\frac{2}{3}af(x)+\frac{b}{3}=0$,即方程3(f(x))2+2af(x)+b=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2.![]()
不妨取0<x1<x2,f(x1)>0.
①把y=f(x)向下平移x1个单位即可得到y=f(x)-x1的图象,
∵f(x1)=x1,可知方程f(x)=x1有两解.
②把y=f(x)向下平移x2个单位即可得到y=f(x)-x2的图象,∵f(x1)=x1,∴f(x1)-x2<0,可知方程f(x)=x2只有一解.
综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+2af(x)+b=0的只有3不同实根.
故答案为3.
点评 本题综合考查了利用导数研究函数得单调性、极值及方程解得个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | Sn=2an-1 | B. | Sn=2an-2 | C. | Sn=4-2an | D. | Sn=3-2an |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | r<p<q | B. | q<p<r | C. | r<q<p | D. | p<q<r |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b2-4ac≥0 | B. | b>0,c>0 | C. | b=0,c>0 | D. | b2-3ac≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com