精英家教网 > 高中数学 > 题目详情
20.棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为$\frac{{a}^{3}}{6}$.

分析 八面体为两个相等的正四棱锥的组合体,求出四棱锥的底面边长和高,代入体积公式即可得出.

解答 解:设正方体的各面中心为A,B,C,D,E,F,
∵正方体棱长为a,∴四边形BCDE是正方形,边长为$\frac{\sqrt{2}}{2}$a,AF=a,
∴VA-BCDE=$\frac{1}{3}{S}_{正方形BCDE}•\frac{1}{2}AF$=$\frac{1}{3}×$($\frac{\sqrt{2}}{2}$a)2×$\frac{1}{2}$a=$\frac{1}{12}$a3
∴八面体的体积V=2VA-BCDE=$\frac{{a}^{3}}{6}$.
故答案为:$\frac{{a}^{3}}{6}$.

点评 本题考查了棱锥,正方体的结构特征,体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=ax3-2x的图象过点(-1,4)则a=(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(理)试卷(解析版) 题型:选择题

上随机地取两个实数

,则事件“直线

与圆

相交”发生的概率为

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,则输出的结果是(  )
A.7B.12C.17D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足不等式组$\left\{\begin{array}{l}{2x-y+2≤0}\\{x+2y+2≥0}\\{x≤0}\end{array}\right.$,z=3x-y,则下列结论成立的是(  )
A.z没有最大值,有最小值为-2B.z的最大值为-$\frac{16}{5}$,没有最小值
C.z的最大值为-2,没有最小值D.z的最大值为$-\frac{16}{5}$,最小值为-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数$f(x)=\left\{{\begin{array}{l}{cos\frac{πx}{3},x≥0}\\{-(x+\frac{4}{x}),x<0}\end{array}}\right.$,则f(f(-2))=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)的图象的顶点为A(1,16),且函数f(x)的图象在x轴上截得的线段长为8.
(1)求函数f(x)的解析式;
(2)若函数g(x)=(2-2p)x-f(x)在x∈[0,2]上是单调增函数,求实数p的取值范围;
(3)若函数h(x)=-2af(x)+(4a+2)x+29a-1在区间[-1,1]上有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程 ${(f(x))^2}+\frac{2}{3}af(x)+\frac{b}{3}=0$的不同实根个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图所示的伪代码,输出的结果是25.

查看答案和解析>>

同步练习册答案