精英家教网 > 高中数学 > 题目详情
15.已知实数x,y满足不等式组$\left\{\begin{array}{l}{2x-y+2≤0}\\{x+2y+2≥0}\\{x≤0}\end{array}\right.$,z=3x-y,则下列结论成立的是(  )
A.z没有最大值,有最小值为-2B.z的最大值为-$\frac{16}{5}$,没有最小值
C.z的最大值为-2,没有最小值D.z的最大值为$-\frac{16}{5}$,最小值为-2

分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=3x-y得y=3x-z,
平移直线y=3x-z由图象可知当直线y=3x-z经过点A时,直线y=3x-z的截距最大,
此时z最小.
由$\left\{\begin{array}{l}{x=0}\\{2x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,
即A(0,2),
此时z=0-2=-2,无最小值
故选:C.

点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,函数y=f[f(x)]-$\frac{1}{2}$的零点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)二次函数的图象经过点(2,-5),且它的顶点坐标为(1,-8),求它的解析式;
(2)二次函数的图象满足f(0)=0,f(2)=0,f(x)=x有两个相等的实根,求它的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|y=$\sqrt{{2}^{x}-1}$),B={x|x2-1>0},则A∩B=(  )
A.(-∞,-1)B.[0,1)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为$\frac{{a}^{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m?α,n?β,则α∥β
C.若α⊥β,m⊥β,则m∥αD.若m∥n,m⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=-x2+2x,x∈[-1,3],则任取一点x0∈[-1,3],使得f(x0)≥0的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点为F,右顶点为A,过F且与x轴垂直的直线交双曲线于B,C两点,若△ABC为直角三角形,则双曲线的离心率为(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案