分析 (1)利用体积设出椭圆的方程,求出椭圆的几何量即可.
(2)设出直线方程,联立直线与椭圆方程的方程组,设出AB坐标,利用韦达定理结合弦长公式求直线的斜率,即可得到结果.
解答 解:(1)设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,因为c=1,e=$\frac{c}{a}$=$\frac{1}{2}$,a=2,则b=$\sqrt{3}$.
所以椭圆方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)由题意可知直线l的斜率存在,设直线方程为:y=kx+1,
则由$\left\{{\begin{array}{l}{y=kx+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,得(3+4k2)x2+8kx-8=0,且△>0.
设A(x1,y1),B(x2,y2),
则$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{-8k}{{3+4{k^2}}}}\\{{x_1}{x_2}=\frac{-8}{{3+4{k^2}}}}\end{array}}\right.$,
又$|AB|=\sqrt{1-{k^2}}|x-{x_1}|=\frac{{3\sqrt{5}}}{2}$,
得16k4-24k2-7=0,
解得${k^2}=\frac{1}{4}$,即$k=±\frac{1}{2}$.
所以直线l的方程为$y=±\frac{1}{2}x+1$,即x-2y+2=0或x+2y-2=0.
点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | z没有最大值,有最小值为-2 | B. | z的最大值为-$\frac{16}{5}$,没有最小值 | ||
| C. | z的最大值为-2,没有最小值 | D. | z的最大值为$-\frac{16}{5}$,最小值为-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com