精英家教网 > 高中数学 > 题目详情
10.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直线l的方程.

分析 (1)利用体积设出椭圆的方程,求出椭圆的几何量即可.
(2)设出直线方程,联立直线与椭圆方程的方程组,设出AB坐标,利用韦达定理结合弦长公式求直线的斜率,即可得到结果.

解答 解:(1)设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,因为c=1,e=$\frac{c}{a}$=$\frac{1}{2}$,a=2,则b=$\sqrt{3}$.
所以椭圆方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)由题意可知直线l的斜率存在,设直线方程为:y=kx+1,
则由$\left\{{\begin{array}{l}{y=kx+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,得(3+4k2)x2+8kx-8=0,且△>0.
设A(x1,y1),B(x2,y2),
则$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{-8k}{{3+4{k^2}}}}\\{{x_1}{x_2}=\frac{-8}{{3+4{k^2}}}}\end{array}}\right.$,
又$|AB|=\sqrt{1-{k^2}}|x-{x_1}|=\frac{{3\sqrt{5}}}{2}$,
得16k4-24k2-7=0,
解得${k^2}=\frac{1}{4}$,即$k=±\frac{1}{2}$.
所以直线l的方程为$y=±\frac{1}{2}x+1$,即x-2y+2=0或x+2y-2=0.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知全集U=R,集合A={x|3≤x<7},B={x|2<x<10},求∁U(A∪B)、∁U(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={1,x},B={1,y},且A∪B={1,2,3},则x+y=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(理)试卷(解析版) 题型:选择题

已知向量满足,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an},满足a1+a5=6,a2+a14=26,则{an}的前10项和S10=(  )
A.40B.120C.100D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足不等式组$\left\{\begin{array}{l}{2x-y+2≤0}\\{x+2y+2≥0}\\{x≤0}\end{array}\right.$,z=3x-y,则下列结论成立的是(  )
A.z没有最大值,有最小值为-2B.z的最大值为-$\frac{16}{5}$,没有最小值
C.z的最大值为-2,没有最小值D.z的最大值为$-\frac{16}{5}$,最小值为-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,其中a>0且a≠1.
(1)当x∈(-∞,2)时,f(x)-4的值恒为负,求a的取值范围;
(2)若函数y=f(x)的定义域为(-1,1),求满足不等式f(1-m)+f(1-m2)<0的实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知四棱椎P-ABCD的底面是边长为6的正方形,且该四棱椎的体积为96,则点P到面ABCD的距离是8.

查看答案和解析>>

同步练习册答案