精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,其中a>0且a≠1.
(1)当x∈(-∞,2)时,f(x)-4的值恒为负,求a的取值范围;
(2)若函数y=f(x)的定义域为(-1,1),求满足不等式f(1-m)+f(1-m2)<0的实数m的取值集合.

分析 (1)要使f(x)-4的值恒为负,只要f(2)-4≤0,即 $\frac{{a}^{2}+1}{a}$≤4,由此求得a的范围;
(2)由题意可得 f(1-m)<-f(1-m2)=f(m2-1),得到关于m的不等式组,解出即可.

解答 解:(1)由于函数f(x)在(-∞,2)上单调递增,要使f(x)-4的值恒为负,
只要f(2)-4≤0,即 $\frac{a}{{a}^{2}-1}$(a2-a-2)-4≤0,即$\frac{{a}^{2}+1}{a}$≤4,
解得 2-$\sqrt{3}$≤a≤2+$\sqrt{3}$,且a≠1,即a的范围[2-$\sqrt{3}$,1)、(1,2+$\sqrt{3}$].
(2)由于函数y=f(x)的定义域为(-1,1),
故由不等式f(1-m)+f(1-m2)<0,
可得 f(1-m)<-f(1-m2)=f(m2-1),
∴$\left\{\begin{array}{l}{-1<1-m<1}\\{-1<1{-m}^{2}<1}\\{1-m{<m}^{2}-1}\end{array}\right.$,解得 1<m<$\sqrt{2}$.

点评 本题主要考查函数的单调性和奇偶性,利用函数的单调性解不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若B∩A=B,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m?α,n?β,则α∥β
C.若α⊥β,m⊥β,则m∥αD.若m∥n,m⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用m,n表示两条不同的直线,α,β表示两个不同的平面,给出下列命题:
①若m⊥n,m⊥α,则n∥α; 
②若m∥α,α⊥β则m⊥β;
③若m⊥β,α⊥β,则m∥α;
④若m⊥n,m⊥α,n⊥β,则α⊥β,
其中,正确命题是(  )
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=-x2+2x,x∈[-1,3],则任取一点x0∈[-1,3],使得f(x0)≥0的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于下列命题:
①若命题p:?x∈R,使得tanx<x,命题q:?x∈R+,lg2x+lgx+1>0则命题“p且?q”是真命题;
②若随机变量ξ~B(n,p),Eξ=6,Dξ=3,则$P(ξ=1)=\frac{3}{4}$
③“lgx,lgy,lgz成等差数列”是“y2=xz”成立的充要条件;
④已知ξ服从正态分布N(1,22),且P(-1≤ξ<1)=0.3,则P(ξ≥3)=0.2
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}为等差数列,若a3+a11=24,a4=3,则数列{an}的通项公式为an=3n-9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,公差d=2,a2是a1与a4的等比中项.
(1)求an
(2)设bn=(-1)n•2${\;}^{{a}_{n}}$,n∈N*,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案