精英家教网 > 高中数学 > 题目详情
2.已知某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.12πC.D.

分析 三视图可知该几何体为一个四棱锥,从一个顶点出发的三条棱两两互相垂直,可将该四棱锥补成正方体,再去求解.

解答 解:由三视图知该几何体为有一侧棱垂直底面的四棱锥,将此四棱锥补成正方体,易知正方体的体对角线即为外接球直径,
所以2r=$\sqrt{3}$,所以r=$\frac{\sqrt{3}}{2}$.
所以该几何体外接球的表面积为$4π•\frac{3}{4}$=3π
故选A.

点评 本题考查三视图求几何体的体积,考查计算能力,空间想象能力,转化能力,将四棱锥补成正方体是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}中,a3=2,a4a6=16,则$\frac{{{a_9}-{a_{11}}}}{{{a_5}-{a_7}}}$=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(理)试卷(解析版) 题型:选择题

执行如图所示的算法,则输出的结果是( )

A.1 B. C. D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z满足z=$\frac{2i}{1+i}$,那么z的共轭复数在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m?α,n?β,则α∥β
C.若α⊥β,m⊥β,则m∥αD.若m∥n,m⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用m,n表示两条不同的直线,α,β表示两个不同的平面,给出下列命题:
①若m⊥n,m⊥α,则n∥α; 
②若m∥α,α⊥β则m⊥β;
③若m⊥β,α⊥β,则m∥α;
④若m⊥n,m⊥α,n⊥β,则α⊥β,
其中,正确命题是(  )
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于下列命题:
①若命题p:?x∈R,使得tanx<x,命题q:?x∈R+,lg2x+lgx+1>0则命题“p且?q”是真命题;
②若随机变量ξ~B(n,p),Eξ=6,Dξ=3,则$P(ξ=1)=\frac{3}{4}$
③“lgx,lgy,lgz成等差数列”是“y2=xz”成立的充要条件;
④已知ξ服从正态分布N(1,22),且P(-1≤ξ<1)=0.3,则P(ξ≥3)=0.2
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数$f(x)=\frac{{3{x^2}+ax}}{e^x},a∈R$.
(1)若f(x)在x=0处取得极值,求实数a的值;
(2)若f(x)在[3,+∞)上为减函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案