精英家教网 > 高中数学 > 题目详情
12.设函数$f(x)=\frac{{3{x^2}+ax}}{e^x},a∈R$.
(1)若f(x)在x=0处取得极值,求实数a的值;
(2)若f(x)在[3,+∞)上为减函数,求实数a的取值范围.

分析 (1)求导数,由f(x)在x=0处取得极值,可得f′(0)=0,解得a;
(2)“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥$\frac{-3{x}^{2}+6x}{x-1}$,在[3,+∞)上恒成立.令u(x)=$\frac{-3{x}^{2}+6x}{x-1}$,利用导数研究其最大值即可.

解答 解:(1)f′(x)=$\frac{-3{x}^{2}+(6-a)x+a}{{e}^{x}}$,
∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0;
(2)由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,
可得a≥$\frac{-3{x}^{2}+6x}{x-1}$,在[3,+∞)上恒成立.
令u(x)=$\frac{-3{x}^{2}+6x}{x-1}$,u′(x)=$\frac{-3[(x-1)^{2}+1]}{(x-1)^{2}}$<0,
∴u(x)在[3,+∞)上单调递减,
∴a≥u(3)=-$\frac{9}{2}$.
因此a的取值范围为:[-$\frac{9}{2}$,+∞).

点评 本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了“分离参数法”、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,圆内接四边形ABCD满足AB∥CD,P在BA的延长线上,且PD2=PA•PB.若BD=2$\sqrt{2}$,PD=CD=2.
(Ⅰ)证明:∠PDA=∠CDB;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知四棱椎P-ABCD的底面是边长为6的正方形,且该四棱椎的体积为96,则点P到面ABCD的距离是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设Sn是等差数列{an}的前n项和,若$\frac{a_3}{a_6}=\frac{11}{5}$,则$\frac{S_5}{{{S_{11}}}}$=(  )
A.$\frac{11}{5}$B.1C.$\frac{5}{11}$D.${(\frac{11}{5})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.总体由编号为01,02,03,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从如表所示的随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第4个个体的编号是(  )
78   16   65   72   08   20   63   14   07   02   43   69   97   28   01   98
32   04   92   34   49   35   82   00   36   23   48   69   69   38   74   81
A.08B.14C.07D.02

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{cos2x}{\sqrt{2}cos(x+\frac{π}{4})}$=$\frac{1}{5}$,则sin2x=(  )
A.-$\frac{24}{25}$B.-$\frac{4}{5}$C.$\frac{24}{25}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行,且对?$θ∈[0\;,\;\;\frac{π}{2}]$,|f(cosθ)-f(sinθ)|≤b恒成立,则b的最小值为(  )
A.e-1B.eC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的奇函数f(x)满足f(x+1)=f(x-1),数列{an}的前n项和为Sn,且Sn=2an+2,则f(an)=(  )
A.0B.0或1C.-1或0D.1或-1

查看答案和解析>>

同步练习册答案