精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=ax3-2x的图象过点(-1,4)则a=(  )
A.2B.-2C.3D.-3

分析 利用点的坐标满足函数的解析式,得到方程,求解即可.

解答 解:函数f(x)=ax3-2x的图象过点(-1,4),
可得:-a+2=0,
则a=2.
故选:A.

点评 本题考查函数的零点与方程根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数y=sin(2x+$\frac{π}{3}$)的图象上所有的点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为(  )
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x+$\frac{π}{3}$)C.y=sin(4x+$\frac{2π}{3}$)D.y=sin(4x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=cos2(x-φ)-sin2(x-φ),其中φ∈(0,$\frac{π}{2}}$),已知f(x)图象的一个对称中心为点($\frac{π}{3}$,0).
(Ⅰ)求φ的值;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,且f($\frac{A}{2}$+$\frac{π}{12}$)=$\frac{\sqrt{2}}{2}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集U=R,M={x|-3<x<2},N={x|x<-4或x>1},则(∁UM)∩N等于(  )
A.M∪NB.U(M∪N)C.{x|x<-4或x≥2}D.{x|x<-3或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,函数y=f[f(x)]-$\frac{1}{2}$的零点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式中,表达错误的是(  )
A.∅⊆{x|x<4}B.$2\sqrt{3}∈\left\{{x|x<4}\right\}$C.∅∈{∅,{0},{1}}D.$\left\{{2\sqrt{3}}\right\}∈\left\{{x|x<4}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,则f(a)等于(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)求a2的值,并求$\frac{{{a_{n+1}}-(n+1)}}{{{a_n}-n}}$的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若数列{an}的前n项和Sn,证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为$\frac{{a}^{3}}{6}$.

查看答案和解析>>

同步练习册答案