精英家教网 > 高中数学 > 题目详情
14.F是抛物线x2=2y的焦点,A、B是抛物线上的两点,|AF|+|BF|=6,则线段AB的中点到x轴的距离为2.5.

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点纵坐标,求出线段AB的中点到x轴的距离.

解答 解:抛物线x2=2y的焦点F(0,0.5),准线方程y=-0.5,
设A(x1,y1),B(x2,y2
∴|AF|+|BF|=y1+0.5+y2+0.5=6
解得y1+y2=5,
∴线段AB的中点纵坐标为2.5
∴线段AB的中点到x轴的距离为2.5.
故答案为:2.5.

点评 本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.(logaba)2+(logabb)•(logab(a2b))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数$f(x)=\left\{{\begin{array}{l}{cos\frac{πx}{3},x≥0}\\{-(x+\frac{4}{x}),x<0}\end{array}}\right.$,则f(f(-2))=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,短轴长为2,点M为椭圆E上一个动点,且|MF|的最大值为$\sqrt{2}+1$.
(1)求椭圆E的方程;
(2)设不在坐标轴上的点M的坐标为(x0,y0),点A,B为椭圆E上异于点M的不同两点,且直线x=x0平分∠AMB,试用x0,y0表示直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程 ${(f(x))^2}+\frac{2}{3}af(x)+\frac{b}{3}=0$的不同实根个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的几何体中,四边形ABCD是边长为3的菱形,∠DAB=60°,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$\frac{1+2i}{z}=i$,则z的虚部为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过三点A(4,1),B(-6,3),C(3,0)的圆的方程,并求这个圆的半径长和圆心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某设备的使用年限x与所支出的总费用y(万元)有如下的统计资料:
使用年限x1234
总费用y1.5233.5
由表中数据最小二乘法得线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.7,由此预测,当使用10年时,所支出的总费用约为5.5万元.

查看答案和解析>>

同步练习册答案