精英家教网 > 高中数学 > 题目详情
2.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,短轴长为2,点M为椭圆E上一个动点,且|MF|的最大值为$\sqrt{2}+1$.
(1)求椭圆E的方程;
(2)设不在坐标轴上的点M的坐标为(x0,y0),点A,B为椭圆E上异于点M的不同两点,且直线x=x0平分∠AMB,试用x0,y0表示直线AB的斜率.

分析 (1)2b=2,b=1,由$\left\{\begin{array}{l}{a^2}-{c^2}=1\\ a+c=\sqrt{2}+1\end{array}\right.$,联立解出即可得出.
(2)设点A,B的坐标分别为(x1,y1),(x2,y2),由题意可知直线MA的斜率存在,设直线MA的方程为y-y0=k(x-x0),与椭圆方程联立化为:$(2{k^2}+1){x^2}+4k({y_0}-k{x_0})x+2({y_0}-k{x_0}{)^2}-2=0$,利用根与系数的关系解得x1.由于直线x=x0平分∠AMB,可得直线MA,MB的倾斜角互补,斜率互为相反数.同理可得x2.利用斜率计算公式、根与系数的关系代入即可得出.

解答 解:(1)2b=2,b=1,
由$\left\{\begin{array}{l}{a^2}-{c^2}=1\\ a+c=\sqrt{2}+1\end{array}\right.$得$\left\{\begin{array}{l}a=\sqrt{2}\\ c=1\end{array}\right.$,
∴椭圆E的方程为$\frac{x^2}{2}+{y^2}=1$.
(2)设点A,B的坐标分别为(x1,y1),(x2,y2),由题意可知直线MA的斜率存在,设直线MA的方程为y-y0=k(x-x0),
由$\left\{\begin{array}{l}y-{y_0}=k(x-{x_0})\\{x^2}+2{y^2}=2\end{array}\right.$得${x^2}+2[kx+({y_0}-k{x_0}){]^2}=2$,化为:$(2{k^2}+1){x^2}+4k({y_0}-k{x_0})x+2({y_0}-k{x_0}{)^2}-2=0$,
∴${x_0}•{x_1}=\frac{{2{{({y_0}-k{x_0})}^2}-2}}{{2{k^2}+1}}$,${x_1}=\frac{{2{{({y_0}-k{x_0})}^2}-2}}{{(2{k^2}+1){x_0}}}$,
∵直线x=x0平分∠AMB,∴直线MA,MB的倾斜角互补,斜率互为相反数.
同理${x_2}=\frac{{2{{({y_0}+k{x_0})}^2}-2}}{{(2{k^2}+1){x_0}}}$,
∴${k_{AB}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{k{x_1}+{y_0}-k{x_0}-(-k{x_2}+{y_0}+k{x_0})}}{{{x_1}-{x_2}}}$=$\frac{{k({x_1}+{x_2})-2k{x_0}}}{{{x_1}-{x_2}}}=\frac{{k•\frac{{2(2y_0^2+2{k^2}x_0^2)-4}}{{(2{k^2}+1){x_0}}}-2k{x_0}}}{{\frac{{2•2{y_0}•(-2k{x_0})}}{{(2{k^2}+1){x_0}}}}}$=$\frac{{k[2(2y_0^2+2{k^2}x_0^2)-4]-2kx_0^2(2{k^2}+1)}}{{-8k{x_0}{y_0}}}$=$\frac{{2y_0^2+2{k^2}x_0^2-2-2{k^2}x_0^2-x_0^2}}{{-4{x_0}{y_0}}}=\frac{2y_0^2-2-x_0^2}{{-4{x_0}{y_0}}}$=$\frac{-2x_0^2}{{-4{x_0}{y_0}}}=\frac{x_0}{{2{y_0}}}$.

点评 本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、斜率计算公式、倾斜角与斜率的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设数列{an}是首项为1,公比为-2的等比数列,则a1+|a2|+|a3|+a4=(  )
A.-5B.5C.11D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{π}{3}$,($\overrightarrow{a}$+2$\overrightarrow{b}$)$\overrightarrow{a}$=3,则|$\overrightarrow{b}$|的值是(  )
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,曲线C1的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.(t$为参数,0≤α<π),以原点O为极点,以x轴正半轴为极轴,已知曲线C2的极坐标方程为ρ=4cosθ,射线$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$与曲线C2相交,交点分别为A,B,C(A,B,C均不与O重合).
(1)求证:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)当$ϕ=\frac{π}{12}$时,B,C两点在曲线C1上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若某空间几何体的三视图如图所示,则该几何体是(  )
A.三棱柱B.三棱锥C.四棱锥D.四棱台

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{S_n}{T_n}=\frac{38n+14}{2n+1}({n∈{N_+}})$,则$\frac{a_6}{b_7}$=(  )
A.16B.$\frac{242}{15}$C.$\frac{432}{23}$D.$\frac{494}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.F是抛物线x2=2y的焦点,A、B是抛物线上的两点,|AF|+|BF|=6,则线段AB的中点到x轴的距离为2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C1:x2+(y-$\frac{1}{4}$)2=1(y≥$\frac{1}{4}$),C2:x2=8y-1(|x|≥1),动直线l与C2相交于A,B两点,曲线C2在A,B处的切线相交于点M.
(1)当MA⊥MB时,求证:直线l恒过定点,并求出定点坐标;
(2)若直线l与C1相切于点P,试问:在y轴上是否存在两个定点T1,T2,当直线MT1,MT2斜率存在时,两直线的斜率之积恒为定值?若存在求出满足条件的点T1,T2的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.P是二面角α-AB-β棱上的一点,分别在α,β平面上引射线PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小为(  )
A.60°B.70°C.80°D.90°

查看答案和解析>>

同步练习册答案