分析 (1)射线$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$(Φ∈$[0,\frac{π}{4})$)分别与曲线C2联立解得:A(4cosΦ,Φ),B(4cos(Φ+$\frac{π}{4}$),Φ+$\frac{π}{4}$),C(4cos(Φ-$\frac{π}{4}$),Φ),化简|OB|+|OC|=$\sqrt{2}$×4×cosΦ,即可证明$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$.
(2)曲线C1的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.(t$为参数,0≤α<π),当$ϕ=\frac{π}{12}$时,B$(2,\frac{π}{3})$,C$(2\sqrt{3},\frac{π}{6})$,可得直角坐标B$(1,\sqrt{3})$,C$(3,\sqrt{3})$.根据两点在曲线C1上,即可得出.
解答 (1)证明:射线$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$(Φ∈$[0,\frac{π}{4})$)分别与曲线C2联立解得:A(4cosΦ,Φ),B(4cos(Φ+$\frac{π}{4}$),Φ+$\frac{π}{4}$),
C(4cos(Φ-$\frac{π}{4}$),Φ),
则|OB|+|OC|=4cos(Φ+$\frac{π}{4}$)+4cos(Φ-$\frac{π}{4}$)=2×4×cosΦ•cos$\frac{π}{4}$=$\sqrt{2}$×4×cosΦ=$\sqrt{2}$|OA|.
∴$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)解:曲线C1的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.(t$为参数,0≤α<π),
当$ϕ=\frac{π}{12}$时,B$(2,\frac{π}{3})$,C$(2\sqrt{3},\frac{π}{6})$,可得直角坐标B$(1,\sqrt{3})$,C$(3,\sqrt{3})$.
∵两点在曲线C1上,∴α=0,m∈R.
点评 本题考查了极坐标与直角坐标方程的互化公式、直线的参数方程及其应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com