精英家教网 > 高中数学 > 题目详情
12.P是二面角α-AB-β棱上的一点,分别在α,β平面上引射线PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小为(  )
A.60°B.70°C.80°D.90°

分析 本题考查的知识点是二面角及其度量,我们要根据二面角的定义,在两个平面的交线上取一点Q,然后向两个平面引垂线,构造出二面角的平面角,然后根据平面几何的性质,求出含二面角的平面角的三角形中相关的边长,解三角形即可得到答案.

解答 过AB上一点Q分别在α,β内做AB的垂线,交PM,PN于M点和N点,
则∠MQN即为二面角α-AB-β的平面角,如下图所示:
设PQ=a,则∵∠BPM=∠BPN=45°
∴QM=QN=a
PM=PN=$\sqrt{2}$a
又由∠MPN=60°,易得△PMN为等边三角形
则MN=$\sqrt{2}$a,
解三角形QMN易得∠MQN=90°.
故选:D.

点评 本题考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,短轴长为2,点M为椭圆E上一个动点,且|MF|的最大值为$\sqrt{2}+1$.
(1)求椭圆E的方程;
(2)设不在坐标轴上的点M的坐标为(x0,y0),点A,B为椭圆E上异于点M的不同两点,且直线x=x0平分∠AMB,试用x0,y0表示直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过三点A(4,1),B(-6,3),C(3,0)的圆的方程,并求这个圆的半径长和圆心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a}{x}$+lnx.
(Ⅰ)若函数f(x)在区间[1,e]上的最小值是$\frac{3}{2}$,求a的值;
(Ⅱ)当a=1时,设F(x)=f(x)+1+$\frac{lnx}{x}$,求证:当x>1时,$\frac{F(x)}{{2{e^{x-1}}}}$>$\frac{e+1}{{x{e^x}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若曲线$\frac{x^2}{1-k}+\frac{y^2}{1+k}=1$表示椭圆,则k的取值范围是(  )
A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个物体的运动方程是s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在2秒末的瞬时速度是(  )
A.3米/秒B.4米/秒C.5米/秒D.2米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某设备的使用年限x与所支出的总费用y(万元)有如下的统计资料:
使用年限x1234
总费用y1.5233.5
由表中数据最小二乘法得线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.7,由此预测,当使用10年时,所支出的总费用约为5.5万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α是第四象限角,则$\frac{α}{2}$是(  )
A.第一或第三象限角B.第二或第三象限角
C.第一或第四象限角D.第二或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2cos2x-8sinx-3的值域为[-11,5].

查看答案和解析>>

同步练习册答案