分析 (1)由圆的方程找出圆心坐标与圆的半径,因为P在直线l上,所以设P的坐标为(a,2a),然后由M和P的坐标,利用两点间的距离公式表示出MP的长,根据|$\overrightarrow{MP}$|=$\sqrt{5}$,列出关于a的方程,求出方程的解即可得到a的值,得到P的坐标,设过P点切线方程的斜率为k,根据P的坐标和斜率k写出切线的方程,根据直线与圆相切时圆心到直线的距离公式等于半径,利用点到直线的距离公式表示出圆心M到切线方程的距离d,让d等于圆的半径r,即可得到关于k的方程,求出方程的解即可得到k的值,写出直线PA的方程即可;
(2)D的轨迹为x-2y+2=0,此轨迹与l平行,所以|$\overrightarrow{DO}$|最小值为两平行直线间的距离;
(3)可得DO2=f(a)=${a}^{2}+(\frac{a}{2}+1)^{2}$=$\frac{5}{4}(a+\frac{2}{5})^{2}+\frac{4}{5}$,a∈[$\frac{t}{2}$,$\frac{t+4}{2}$],分三种情况,利用二次函数的图象即可求出函数的最小值即可得出结论.
解答 解:(1)由圆M:x2+(y-2)2=1,得到圆心M(0,2),半径r=1,
设P(2a,a)(0≤a≤2).
∵M(0,2),|$\overrightarrow{MP}$|=$\sqrt{5}$,
∴$\sqrt{(2a)^{2}+(a-2)^{2}}$=$\sqrt{5}$.
解得a=1或a=-$\frac{1}{5}$(舍去).
∴P(2,1).由题意知切线PA的斜率存在,设斜率为k.
所以直线PA的方程为y-1=k(x-2),即kx-y-2k+1=0.
∵直线PA与圆M相切,
∴$\frac{|-2-2k+1|}{\sqrt{1+{k}^{2}}}$=1,
解得k=0或k=-$\frac{4}{3}$.
∴直线PA的方程是y=1或4x+3y-11=0;
(2)设P(2a,a)(t≤2a≤t+4),
因为PA切⊙M,所以PA⊥MA,
所以D是MP的中点,
设D(x,y),易知$\left\{\begin{array}{l}{x=a}\\{y=\frac{a+2}{2}}\end{array}\right.$,
所以D的轨迹为x-2y+2=0,此轨迹与l平行,
所以|$\overrightarrow{DO}$|最小值为两平行直线间的距离,d=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$;
(3)由题意,D的坐标是(a,$\frac{a}{2}$+1).
可得DO2=f(a)=${a}^{2}+(\frac{a}{2}+1)^{2}$=$\frac{5}{4}(a+\frac{2}{5})^{2}+\frac{4}{5}$,a∈[$\frac{t}{2}$,$\frac{t+4}{2}$].
当$\frac{t}{2}$>-$\frac{2}{5}$,即t>-$\frac{4}{5}$时,f(a)min=$\frac{5}{16}{t}^{2}+\frac{t}{2}$+1;
当$\frac{t}{2}≤-\frac{2}{5}≤\frac{t}{2}+2$,即-$\frac{24}{5}≤t≤-\frac{4}{5}$时,f(a)min=$\frac{4}{5}$;
当$\frac{t}{2}+2<-\frac{2}{5}$,即t<-$\frac{24}{5}$时,f(a)min=$\frac{15}{16}{t}^{2}$+3t+8
所以线段DO长的最小值为:g(t)=$\left\{\begin{array}{l}{\frac{5}{16}{t}^{2}+\frac{1}{2}t+1,t>-\frac{4}{5}}\\{\frac{4}{5},-\frac{24}{5}≤t≤-\frac{4}{5}}\\{\frac{5}{16}{t}^{2}+3t+8,t<-\frac{4}{5}}\end{array}\right.$;
令g(t)=$\frac{4}{5}$,-$\frac{24}{5}≤t≤-\frac{4}{5}$,有无穷多个解,
当g(t)>$\frac{4}{5}$时,有两解,
当g(t)<$\frac{4}{5}$时无解;
所以y=g(t)-$\frac{4}{5}$存在无穷多个零点的t的取值范围是-$\frac{24}{5}≤t≤-\frac{4}{5}$,
所以P=$\frac{-\frac{4}{5}-(-\frac{24}{5})}{0-(-6)}$=$\frac{2}{3}$.
点评 本题给出直线与圆相切,求切线的方程并求线段长的最小值.着重考查了圆的方程、直线的方程、直线与圆的位置关系和二次函数的图象与性质等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | Sn=2an-1 | B. | Sn=2an-2 | C. | Sn=4-2an | D. | Sn=3-2an |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b2-4ac≥0 | B. | b>0,c>0 | C. | b=0,c>0 | D. | b2-3ac≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com