精英家教网 > 高中数学 > 题目详情
16.利用计算机产生0~2之间的均匀随机数x,则事件“3x-2≥0”发生的概率为$\frac{2}{3}$.

分析 由题意可得概率为线段长度之比,计算可得.

解答 解:由题意可得总的线段长度为2-0=2,
在其中满足3x-2≥0即x≥$\frac{2}{3}$的线段长度为2-$\frac{2}{3}$=$\frac{4}{3}$,
∴所求概率P=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若$\frac{1+2i}{z}=i$,则z的虚部为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若曲线$\frac{x^2}{1-k}+\frac{y^2}{1+k}=1$表示椭圆,则k的取值范围是(  )
A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某设备的使用年限x与所支出的总费用y(万元)有如下的统计资料:
使用年限x1234
总费用y1.5233.5
由表中数据最小二乘法得线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.7,由此预测,当使用10年时,所支出的总费用约为5.5万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作⊙M的切线PA,切点是A.
(1)若t=0,|$\overrightarrow{MP}$|=$\sqrt{5}$,求直线PA的方程;
(2)若经过A,P,M三点的圆的圆心是D,求|$\overrightarrow{DO}$|的最小值;
(3)在(2)的条件下,$\overrightarrow{DO}$2的最小值为g(t),若在区间[-6,0]上任取一个数,求该数能使函数y=g(t)-$\frac{4}{5}$存在无穷多个零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α是第四象限角,则$\frac{α}{2}$是(  )
A.第一或第三象限角B.第二或第三象限角
C.第一或第四象限角D.第二或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:任意x>0,总有ex≥1,则?p为(  )
A.存在x≤0,使得 ex<1B.存在x>0,使得 ex<1
C.任意x>0,总有 ex<1D.任意x≤0,总有 ex<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的首项a1=1,a2=3,前n项和为Sn,且$\frac{{{S_{n+1}}-{S_n}}}{{{S_n}-{S_{n-1}}}}=\frac{{2{a_n}+1}}{a_n}(n≥2,n∈{N^*})$,设b1=1,bn+1=log2(an+1)+bn(n∈N*
(1)求数列{an},{bn}的通项公式
(2)设cn=$\frac{{{4^{\frac{{{b_{n+1}}-1}}{n+1}}}}}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Gn
(3)求证$\frac{2}{3}≤{G_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,终边在直线y=2x上,则y=sin(2θ+$\frac{π}{2}}$)的值为(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案