精英家教网 > 高中数学 > 题目详情
16.关于x的方程x3-px+2=0有三个不同实数解,则实数p的取值范围为(3,+∞).

分析 原方程即为p=x2+$\frac{2}{x}$,设f(x)=x2+$\frac{2}{x}$,求出导数,判断单调性,可得极小值3,再由图象,即可得到p的范围.

解答 解:x3-px+2=0即为p=x2+$\frac{2}{x}$,
设f(x)=x2+$\frac{2}{x}$,导数f′(x)=2x-$\frac{2}{{x}^{2}}$,
当x>1时,f′(x)>0,f(x)在(1,+∞)递增;
当x<0,或0<x<1时,f′(x)<0,f(x)在(-∞,0),(0,1)递减.
可得f(x)在x=1处取得极小值3,
作出y=f(x)的图象,由题意可得当p>3时,
直线y=p与y=f(x)有3个交点.
即有原方程有三个不同实数解,则p的范围是(3,+∞).
故答案为:(3,+∞).

点评 本题考查方程的解的个数问题的解法,注意运用分离参数和函数的导数判断单调性和极值,考查数形结合的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.椭圆C1方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1,C2的离心率之积为$\frac{\sqrt{3}}{2}$,则C2的渐近线方程为y=$±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的实轴长为2$\sqrt{3}$,一个焦点的坐标为$(-\sqrt{5},0)$.
(1)求双曲线的方程;
(2)若斜率为2的直线l交双曲线C交于A,B两点,且|AB|=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.有4名男生,5名女生,全体排成一行.
(1)其中甲不在中间也不在两端,有多少种排法?
(2)男女生相间,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.2016年3月12日,第四届北京农业嘉年华在昌平拉开帷幕.活动设置了“三馆两园一带一谷”七大板块.“三馆”即精品农业馆、创意农业馆、智慧农业馆;“两园”即主题狂欢乐园、农事体验乐园;“一带”即草莓休闲体验带;“一谷”即延寿生态观光谷.某校学生准备去参观,由于时间有限,他们准备选择其中的“一馆一园一带一谷”进行参观,那么他们参观的不同路线最多有144种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:
物体重量(单位g)12345
弹簧长度(单位cm)1.53456.5
(1)画出散点图;
(2)利用所给的参考公式,求y对x的回归直线方程;
(3)预测所挂物体重量为8g时的弹簧长度.
参考公式:
1.样本数据x1,x2,…xn的标准差
s=$\sqrt{\frac{1}{n}[({{x}_{1}-\overline{x})}^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$,其中$\overline{x}$为样本的平均数;
2.线性回归方程系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B.若2$\overrightarrow{FA}$=$\overrightarrow{FB}$,则双曲线C的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3].若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如下2×2列联表.
运动时间
性别
运动达人非运动达人合计
男生36
女生26
合计100
(Ⅰ)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(Ⅱ)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=x3-x2+x-2图象在与y轴交点处的切线与两坐标轴围成三角形的面积为2.

查看答案和解析>>

同步练习册答案