【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的图象如图所示.
![]()
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间;
(3)若x∈[-
,0],求函数f(x)的值域.
【答案】(1)
;(2)
;(3)
.
【解析】
(1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式;
(2)令2kπ
2x
2kπ
,k∈z,求得x的范围,可得函数的增区间;
(3)由x∈[
,0],利用正弦函数的定义域和值域求得f(x)的值域.
解:(1)由函数的图象可得A=2,
T=![]()
=
-
,求得ω=2.
再根据五点法作图可得2×
+φ=
,∴φ=
,故f(x)=2sin(2x+
).
(2)令2kπ-
≤2x+
≤2kπ+
,k∈z,求得kπ-
≤x≤kπ+
,
故函数的增区间为[kπ-
,kπ+
],k∈z.
(3)若x∈[-
,0],则2x+
∈[-
,
],∴sin(2x+
)∈[-1,
],
故f(x)∈[-2,1].
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,其中
为指数函数,且
的图象过定点
.
(1)求函数
的解析式;
(2)若关于x的方程,
有解,求实数a的取值范围;
(3)若对任意的
,不等式
恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提升教师专业功底,引领青年教师成长,某市教育局举行了全市“园丁杯”课堂教学比赛,在这次比赛中,通过采用录像课评比的片区预赛,有
共10位选手脱颖而出进入全市决赛.决赛采用现场上课形式,从学科评委库中采用随机抽样抽选代号1,2,3,…,7的7名评委,规则是:选手上完课,评委们当初评分,并从7位评委评分中去掉一个最高分,去掉一个最低分,根据剩余5位评委的评分,算出平均分作为该选手的最终得分.记评委
对某选手评分排名与该选手最终排名的差的绝对值为“评委
对这位选手的分数排名偏差”
.排名规则:由高到低依次排名,如果选手分数一样,认定名次并列(如:选手
分数一致排在第二,则认为他们同属第二名,没有第三名,接下来分数为第四名).七位评委评分情况如下表所示:
![]()
(1)根据最终评分表,填充如下表格:
![]()
(2)试借助评委评分分析表,根据评委对各选手的排名偏差的平方和,判断评委4与评委5在这次活动中谁评判更准确.
____号评委评分分析表
选手 | A | B | C | D | E | F | G | H | I | J |
最终排名 | ||||||||||
评分排名 | ||||||||||
排名偏差 |
(3)从这10位选手中任意选出3位,记其中评委4比评委5对选手排名偏差小的选手数位
,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记
表示
,
中的最大值,如![]()
.已知函数
,
.
(1)设
,求函数
在
上零点的个数;
(2)试探讨是否存在实数
,使得
对
恒成立?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上有两定点A、B,该平面上一动点P与两定点A、B的连线的斜率乘积等于常数
,则动点P的轨迹可能是下面哪种曲线:①直线;②圆;③抛物线;④双曲线;⑤椭圆_____(将所有可能的情况用序号都写出来)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某公路段在某时段内的车流量
(千辆/小时)与汽车的平均速度
(千米/小时)之间有函数关系:
.
(1)在该时段内,当汽车的平均速度
为多少时车流量
最大?最大车流量为多少?(精确到0.01)
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱台
的上下底面分别是边长为2和4的正方形,
= 4且
⊥底面
,点
为
的中点.
![]()
(Ⅰ)求证:
面
;
(Ⅱ)在
边上找一点
,使
∥面
,
并求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com