精英家教网 > 高中数学 > 题目详情

【题目】如图正方体的棱长为1,线段上有两个动点,则下列结论错误的是(

A. 所成角为

B. 三棱锥的体积为定值

C. 平面

D. 二面角是定值

【答案】A

【解析】

利用线面平行和线面垂直的判定定理和棱锥的体积公式以及二面角的定义对选项进行逐个判断即可得到答案.

选项A,ACBDACBB1,且BD AC⊥面DD1B1B,即得ACBE,此命题错误;

选项B, 由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故三棱锥ABEF的体积为定值,此命题正确;

选项C,由正方体ABCDA1B1C1D1的两个底面平行,EF在其一面上且EF与平面ABCD无公共点,故EF∥平面ABCD,此命题正确;

选项D,由于EF为线段B1D1上有两个动点,故二面角AEFB的平面角大小始终是二面角AB1D1B的平面角大小,为定值,故正确;

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的正六边形ABCDEF的中心为OGHMNPQ为圆O上的点,△GAB,△HBC,△MCD,△NDE,△PEF,△QAF分别是以ABBCCDDEEFFA为底边的等腰三角形,沿虚线剪开后,分别以ABBCCDDEEFFA为折痕折起△GAB,△HBC,△MCD,△NDE,△PEF,△QAF,使得GHMNPQ重合,得到六棱锥.当正六边形ABCDEF的边长变化时,所得六棱锥体积(单位:cm3)的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:

所用时间

10

11

12

13

通过公路1的频数

20

40

20

20

通过公路2的频数

10

40

40

10

1)为进行某项研究,从所用时间为1260辆汽车中随机抽取6辆,若用分层随机抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆:

2)若从(1)的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率;

3)假设汽车A只能在约定时间的前11h出发,汽车B只能在约定时间的前12h出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车A和汽车B应如何选择各自的道路?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()(2017·衡水二模)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号0,1,2,3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的编号之和等于7则中一等奖,等于65则中二等奖,等于4则中三等奖,其余结果为不中奖.

(1)求中二等奖的概率.

(2)求不中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点,平面,垂足是线段上的靠近点的三等分点.已知

(1)证明:

(2)若点是线段上一点,且平面平面.试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ae2x+(a﹣2) exx.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处有极值,问是否存在实数m,使得不等式对任意恒成立?若存在,求出m的取值范围;若不存在,请说明理由.

2)若,设.

①求证:当时,

②设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D为侧棱AA1的中点.

1)求异面直线DC1B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

同步练习册答案