精英家教网 > 高中数学 > 题目详情
19.已知点P(0,1),A、B是椭圆C:$\frac{{x}^{2}}{3}$+y2=1上两个动点,且斜率kPA•kPB=$\frac{2}{3}$,求△PAB面积最大值.

分析 设直线PA:y=kx+1,代入椭圆方程可得A的坐标,由直线PB的方程为y=$\frac{2}{3k}$x+1,可得B的坐标,运用点到直线的距离公式和三角形的面积公式,可得S关于k的式子,运用基本不等式,即可求得最大值.

解答 解:设直线PA:y=kx+1,代入椭圆方程可得,
(1+3k2)x2+6kx=0,
解得x=0或-$\frac{6k}{1+3{k}^{2}}$,
可得A(-$\frac{6k}{1+3{k}^{2}}$,$\frac{1-3{k}^{2}}{1+3{k}^{2}}$),
由斜率kPA•kPB=$\frac{2}{3}$,
直线PB的方程为y=$\frac{2}{3k}$x+1,
代入椭圆方程,可得交点B为($\frac{-12k}{4+3{k}^{2}}$,$\frac{3{k}^{2}-4}{3{k}^{2}+4}$),
则△PAB的面积为S=$\frac{1}{2}$|PA|•d(d为B到直线PA的距离)
=$\frac{1}{2}$$\sqrt{\frac{36{k}^{2}}{(1+3{k}^{2})^{2}}+\frac{36{k}^{4}}{(1+3{k}^{2})^{2}}}$•$\frac{|k•\frac{-12k}{3{k}^{2}+4}+1-\frac{3{k}^{2}-4}{3{k}^{2}+4}|}{\sqrt{1+{k}^{2}}}$
=$\frac{12|2k-3{k}^{3}|}{(3{k}^{2}+1)(3{k}^{2}+4)}$,
可令k>0,上式分子分母同除以k2
可得S=$\frac{12|3k-\frac{2}{k}|}{9{k}^{2}+\frac{4}{{k}^{2}}+15}$,
再令|3k-$\frac{2}{k}$|=t,
即有S=$\frac{12t}{{t}^{2}+27}$=$\frac{12}{t+\frac{27}{t}}$≤$\frac{12}{2\sqrt{27}}$=$\frac{2\sqrt{3}}{3}$.
当且仅当t=$\frac{27}{t}$即t=3$\sqrt{3}$,可得k=$\frac{3\sqrt{3}+\sqrt{51}}{6}$,
△PAB面积取得最大值$\frac{2\sqrt{3}}{3}$.

点评 本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程求交点,同时考查三角形面积公式和点到直线的距离和基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数x与答题正确率y%的关系,对某校高三某班学生进行了关注统计,得到如下数据:
 x 1
 y 20 3050 60 
(1)求y关于x的线性回归方程,并预测答题正确率是100%的强化训练次数;
(2)若用$\frac{{y}_{i}}{{x}_{i}+3}$(i=1,2,3,4)表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间[0,2)内,则强化训练有效,请问这个班的强化训练是否有效?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知AC=BC=$\sqrt{2}$,CD=$\frac{\sqrt{3}}{2}$,AB=BE=EA=2,CD⊥面ABC,面ABE⊥面ABC.
(1)求证:AB⊥面CDE;
(2)求二面角A-DE-B所成角的余弦值;
(3)在线段AE上是否存在点P使CP⊥BE,若存在,确定P点位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a∈R,函数f(x)=ax3-3x2
(1)若函数f(x)的图象在x=-1处的切线与直线y=3x平行,求a的值;
(2)若a=1,求函数f(x)的极值与单调区间;
(3)若函数f(x)=ax3-3x2的图象与直线y=-2有三个公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)一个顶点为A(0,1),直线l:y=-x+2恰好与椭圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过顶点A做两条互相垂直的直线分别交椭圆于B、C(点B在y轴的左边),求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,AB=2,CC1=2$\sqrt{2}$,E为CC1的中点,则点A到平面BED的距离为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1所示,直角梯形ABCD中,∠BCD=90°,AD∥BC,AD=6,DC=BC=3.过B作BE⊥AD于E,P是线段DE上的一个动点.将△ABE沿BE向上折起,使平面AEB⊥平面BCDE.连结PA,PC,AC(如图2).
(Ⅰ)取线段AC的中点Q,问:是否存在点P,使得PQ∥平面AEB?若存在,求出PD的长;不存在,说明理由;
(Ⅱ)当EP=$\frac{2}{3}$ED时,求平面AEB和平面APC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在多面体ABCDEF中,四边形ABCD为菱形,∠ABC=60°,EC⊥面ABCD,FA⊥面ABCD,G为BF的中点,若EG⊥面ABF,AB=2.
(1)求证:EG∥面ABCD;
(2)若AF=AB,求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx+1}{{e}^{x}}$(e=2.71828…是自然对数的底数),函数h(x)=1-x-x•lnx.
(1)求函数y=h(x)的单调区间;
(2)若函数g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

同步练习册答案