精英家教网 > 高中数学 > 题目详情
3.已知复数z满足(z-2)i=1+i(i是虚数单位),则z=(  )
A.3-iB.-3+iC.-3-iD.3+i

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(z-2)i=1+i,得
$z-2=\frac{1+i}{i}=\frac{(1+i)(-i)}{-{i}^{2}}=1-i$,
∴z=3-i.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是双曲线右支上一点,PF1交左支于点Q,交渐近线y=$\frac{b}{a}$x于点R,M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=1+$\sqrt{3}$i,则$\frac{z^2}{z-2}$=(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,圆与两坐标轴分别切于A,B两点,圆上一动点P从A开始沿圆周按逆时针方向匀速旋转回到A点,则△OBP的面积随时间变化的图象符合(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(A+C).
(1)求角B的大小;
(2)求函数f(x)=2cos2x+cos(2x-B)在区间$[{0,\frac{π}{2}}]$上的最小值及对应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线m,n和平面α,若n⊥α,则“m?α”是“n⊥m”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若存在实数t,对任意实数x∈[0,a],均有(sinx-t)(cosx-t)≤0,则实数a的最大值是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设实数x,y满足不等式$\left\{\begin{array}{l}{x+y-11≤0}\\{3x-y+3≤0}\\{y≥0}\\{\;}\end{array}\right.$,则z=3x+y的最大值为(  )
A.-3B.11C.15D.不存在

查看答案和解析>>

同步练习册答案