精英家教网 > 高中数学 > 题目详情
(2011•江西模拟)任取集合{1,2,3,4,…,10}中的三个不同数a1,a2,a3,且满足a2-a1≥2,a3-a2≥3,则选取这样的三个数方法种数共有
35
35
.(用数字作答)
分析:因为当a1,a3的值确定后,a2的值就比较好找,所以可按a1,a3之差分类讨论,每类里面先确定a1,a3的值,再确定a2的值,把各类方法数确定后,再相加,就是总的方法数.
解答:解:第一类,a3-a1=5,a1,a3的值有5种情况则a2只有1种情况,共有5×1=5种情况,
第二类,a3-a1=6,a1,a3的值有4种情况则a2有2种情况,共有4×2=8种情况,
第三类,a3-a1=7,a1,a3的值有3种情况则a2有3种情况,共有3×3=9种情况,
第四类,a3-a1=8,a1,a3的值有2种情况则a2有4种情况,共有2×4=8种情况,
第五类,a3-a1=9,a1,a3的值有1种情况则a2有5种情况,共有1×5=5种情况,
则选取这样的三个数方法种数共有5+8+9+8+5=35,
故答案为35.
点评:本题主要考查了分类计数原理在求完成一件事情的方法数时的应用,注意分类要不重不漏,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=
3
bc
sinC=2
3
sinB
,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
1
Sn
}的前n项和Tn
③设Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知数列{an}满足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通项公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求证:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x22
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江西模拟)设a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
满足f(-
π
3
)=f(0)

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步练习册答案