精英家教网 > 高中数学 > 题目详情
16.下面是被严重破坏的频率分布表和频率分布直方图,根据残表和残图,则 p=30,q=0.1.
分数段 频数 
[60,70) p 
[70,80)90  
[80,90) 60 
[90,100] 20 q

分析 由频率分布表得到[70,80)内的频数为90,由频率分布直方图得到[70,80)内的频率为0.45,从而出样本单元数n=200.由此能求出p,q.

解答 解:由频率分布表得到[70,80)内的频数为90,
由频率分布直方图得到[70,80)内的频率为0.45,
∴样本单元数n=$\frac{90}{0.45}$=200.
∴p=200-90-60-20=30.
q=$\frac{20}{200}$=0.1.
故答案为:30,0.1.

点评 本题考查频率分布表中的频数和频率的求法,是基础题,解题时要认真审题,注意频率分布表和频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从武汉市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量频数频率
0至5个00
6至10个300.3
11至15个300.3
16至20个ac
20个以上5b
合计1001
(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$=2(cosωx,cosωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$sinωx)(其中0<ω<1),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,
(1)若直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴,先列表再作出函数f(x)在区间[-π,π]上的图象.
(2)求函数y=f(x),x∈[-π,π]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义域为R的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)<3ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足当x∈(1,2)时,f(x-1)=2f($\frac{1}{x-1}$),当x∈(1,3]时,f(x)=lnx,若函数g(x)=$\frac{f(x)-ax}{x-1}$在区间[$\frac{1}{3}$,1)∪(1,3]上有三个不同的零点,则实数a的取值范围为(  )
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知关于x的方程log2(x-a)=log2$\sqrt{4-{x}^{2}}$有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2a•4x-2x-1
(1)当a=1时,求函数f(x)在x∈[-4,0]上的值域;
(2)若关于x的方程f(x)=0有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,曲线C1的方程为(x-2)2+y2=4.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2,射线C3的极坐标方程为$θ=\frac{π}{4}(ρ>0)$.
(1)将曲线C1的直角坐标方程化为极坐标方程;
(2)若射线C3与曲线C1、C2分别交于点A、B,求|AB|.

查看答案和解析>>

同步练习册答案