精英家教网 > 高中数学 > 题目详情
((本小题满分12分)
已知椭圆C:(常数),P是曲线C上的动点,M是曲线C的右
顶点,定点A的坐标为(2,0).
(1)若M与A重合,求曲线C的焦点坐标.
(2)若,求|PA|的最大值与最小值.
(3)若|PA|最小值为|MA|,求实数的取值范围.
  (1),
(2) 的最小值为,最大值为5.
(3)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在平面直角坐标系中,已知椭圆过点,且椭圆的离心率为
(1)求椭圆的方程
(2)是否存在以为直角顶点且内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的椭圆的右焦点为,离心率为
(1)  求椭圆的方程
(2)  若直线与椭圆恒有两个不同交点,且(其中为原点),求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)在直角坐标系xOy中,椭圆C1的左、右焦点分别为F1、F2.F2也是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A、B两点,若·=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点, 则的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的长轴长为,离心率

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为, 求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在等腰梯形SBCD中,AB∥CD,且AB=2AD,设,以A,B为焦点且过点D的双曲线离心率为,以C,D为焦点且过点A的椭圆的离心率为,则(   )

A.随着角的增大,增大,为定值   
B. 随着角的增大,减小,为定值
C. 随着角的增大,增大,也增大

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程为,则其离心率为              

查看答案和解析>>

同步练习册答案