已知向量函数
(Ⅰ)求的单调增区间;
(Ⅱ)若时,的最大值为4,求的值.
科目:高中数学 来源: 题型:解答题
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米.
(1)将总造价y表示为关于的函数;
(2)问花园如何设计,总造价最少?并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响。
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路1的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当居民用水超过4吨时,超过部分每吨3.00元。若某月某用户用水量为x吨,交水费为y元。
(1)求y关于x的函数关系
(2)若某用户某月交水费为31.2元,求该用户该月的用水量。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(1)设函数,求函数的单调区间;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为元/千克,政府补贴为元/千克,根据市场调查,当时,这种食品市场日供应量万千克与市场日需量万千克近似地满足关系:,。当市场价格称为市场平衡价格。
(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;
(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com