£¨1£©½â£º¡ßy=

x
2£¬¡ày¡ä=

£¬y¡ä|
x=n=

£¬
¡àµãB
n£¨n£¬b
n£©×÷Å×ÎïÏßy=

x2µÄÇÐÏß·½³ÌΪ£ºy-

=

£¨x-n£©£¬
Áîy=0£¬Ôòx=

£¬¼´a
n=

£»£¨3·Ö£©
¡ßµãA
n£¬B
n£¬C
n¹¹³ÉÒÔµãB
nΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡àa
n+c
n=2n£¬¡àc
n=2n-a
n=

£¨5·Ö£©
£¨2£©½â£ºÈôµÈÑüÈý½ÇÐÎA
nB
nC
nΪֱ½ÇÈý½ÇÐΣ¬Ôò|A
nC
n|=2b
n?
¡àn=

£¬¡àn=2£¬
¡à´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA
2B
2C
2Ϊֱ½ÇÈý½ÇÐÎ £¨9·Ö£©
£¨3£©Ö¤Ã÷£º¡ß

=

=

=

£¨

-

£©£¨11·Ö£©
¡àS
n=

£¨1-

+

-

+¡+

-

£©=

£¨1-

£©£¼

ÓÖ1-

ËænµÄÔö´ó¶øÔö´ó£¬
¡àµ±n=1ʱ£¬S
nµÄ×îСֵΪ£º

£¨1-

£©=

£¬
¡à

¡ÜS
n£¼

£¨14·Ö£©
·ÖÎö£º£¨1£©ÀûÓõ¼Êý£¬ÇóµÃµãB
n£¨n£¬b
n£©×÷Å×ÎïÏßy=

x2µÄÇÐÏß·½³Ì£¬Áîy=0£¬¿ÉµÃa
n=

£¬¸ù¾ÝµãA
n£¬B
n£¬C
n¹¹³ÉÒÔµãB
nΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬¿ÉµÃa
n+c
n=2n£¬ÓÉ´Ë¿ÉÇóÊýÁÐ{a
n}£¬{c
n}µÄͨÏʽ£»
£¨2£©ÈôµÈÑüÈý½ÇÐÎA
nB
nC
nΪֱ½ÇÈý½ÇÐΣ¬Ôò|A
nC
n|=2b
n£¬ÓÉ´Ë¿ÉÖª´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA
2B
2C
2Ϊֱ½ÇÈý½ÇÐΣ»
£¨3£©

=

=

=

£¨

-

£©£¬´Ó¶ø¿ÉÇóS
n=

£¨1-

£©£¬½ø¶ø¿ÉÖª

¡ÜS
n£¼

£®
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁÑÏî·¨ÇóÊýÁеĺͣ¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ۺϣ¬ÊôÓÚÖеµÌ⣮