ÒÑÖªµãÁÐB1£¨1£¬b1£©£¬B2£¨2£¬b2£©£¬¡­£¬Bn£¨n£¬bn£©£¬¡­£¨n¡ÊN?£©Ë³´ÎΪÅ×ÎïÏßy=Êýѧ¹«Ê½x2Éϵĵ㣬¹ýµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=Êýѧ¹«Ê½x2µÄÇÐÏß½»xÖáÓÚµãAn£¨an£¬0£©£¬µãCn£¨cn£¬0£©ÔÚxÖáÉÏ£¬ÇÒµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚnʹµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬ÈôÓУ¬ÇëÇó³ön£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèÊýÁÐ{Êýѧ¹«Ê½}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºÊýѧ¹«Ê½¡ÜSn£¼Êýѧ¹«Ê½£®

£¨1£©½â£º¡ßy= x2£¬¡ày¡ä=£¬y¡ä|x=n=£¬
¡àµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=x2µÄÇÐÏß·½³ÌΪ£ºy-=£¨x-n£©£¬
Áîy=0£¬Ôòx=£¬¼´an=£»£¨3·Ö£©
¡ßµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬
¡àan+cn=2n£¬¡àcn=2n-an= £¨5·Ö£©
£¨2£©½â£ºÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn?
¡àn=£¬¡àn=2£¬
¡à´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐÎ £¨9·Ö£©
£¨3£©Ö¤Ã÷£º¡ß===£¨-£©£¨11·Ö£©
¡àSn=£¨1-+-+¡­+-£©=£¨1-£©£¼
ÓÖ1-ËænµÄÔö´ó¶øÔö´ó£¬
¡àµ±n=1ʱ£¬SnµÄ×îСֵΪ£º£¨1-£©=£¬
¡à¡ÜSn£¼£¨14·Ö£©
·ÖÎö£º£¨1£©ÀûÓõ¼Êý£¬ÇóµÃµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=x2µÄÇÐÏß·½³Ì£¬Áîy=0£¬¿ÉµÃan=£¬¸ù¾ÝµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬¿ÉµÃan+cn=2n£¬ÓÉ´Ë¿ÉÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÈôµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬Ôò|AnCn|=2bn£¬ÓÉ´Ë¿ÉÖª´æÔÚn=2£¬Ê¹µÈÑüÈý½ÇÐÎA2B2C2Ϊֱ½ÇÈý½ÇÐΣ»
£¨3£©===£¨-£©£¬´Ó¶ø¿ÉÇóSn=£¨1-£©£¬½ø¶ø¿ÉÖª¡ÜSn£¼£®
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁÑÏî·¨ÇóÊýÁеĺͣ¬¿¼²é²»µÈʽµÄÖ¤Ã÷£¬¿¼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ۺϣ¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
an
£¬n¡ÊN*£¬Âú×㣺
a1
=£¨10£¬-5£©£¬
an
=(xn£¬yn)=k(xn-1-yn-1£¬xn-1+yn-1)
£¬£¨n32 £©£®£¬ÆäÖÐkÊÇ·ÇÁã³£Êý£®
£¨1£©ÇóÊýÁÐ{|
an
|}ÊǵÄͨÏʽ£»
£¨2£©ÇóÏòÁ¿
an-1
Óë
an
µÄ¼Ð½Ç£»£¨n¡Ý2£©£»
£¨3£©µ±k=
1
2
ʱ£¬°Ñ
a1
£¬
a2
£¬¡­£¬
an
£¬¡­ÖÐËùÓÐÓë
a1
¹²ÏßµÄÏòÁ¿°´Ô­À´µÄ˳ÐòÅųÉÒ»ÁУ¬¼ÇΪ
b1
£¬
b2
£¬¡­£¬
bn
£¬¡­£¬Áî
OBn
=
b1
+
b2
+¡­+
bn
£¬OÎª×ø±êÔ­µã£¬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®£¨×¢£ºÈôµã×ø±êΪ£¨tn£¬sn£©£¬ÇÒ
lim
n¡ú¡Þ
tn=t
£¬
lim
n¡ú¡Þ
sn=s
£¬Ôò³ÆµãB£¨t£¬s£©ÎªµãÁеļ«Ï޵㣮£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»ÁзÇÁãÏòÁ¿
an
Âú×㣺
a1
=(x1£¬y1)£¬
an
=(xn£¬yn)=
1
2
(xn-1-yn-1£¬xn-1+yn-1)(n¡Ý2)
£®
£¨¢ñ£©Ö¤Ã÷£º{|
an
|}
ÊǵȱÈÊýÁУ»
£¨¢ò£©ÇóÏòÁ¿
a
n-1
Óë
a
n
µÄ¼Ð½Ç(n¡Ý2)
£»
£¨¢ó£©Éè
a
1
=(1£¬2)£¬°Ñ
a1
£¬
a2
£¬¡­£¬
an
£¬¡­ÖÐËùÓÐÓë
a1
¹²ÏßµÄÏòÁ¿°´Ô­À´µÄ˳ÐòÅųÉ
Ò»ÁУ¬¼ÇΪ
b1
£¬
b2
£¬¡­£¬
.
bn
£¬¡­£¬Áî
OB
n
=
b1
+
b2
+¡­+
bn
£¬0
Îª×ø±êÔ­µã£¬ÇóµãÁÐ{Bn}µÄ¼«ÏÞµãBµÄ×ø±ê£®
£¨×¢£ºÈôµãBn×ø±êΪ(tn£¬sn)£¬ÇÒ
lim
n¡ú¡Þ
tn=t£¬
lim
n¡ú¡Þ
sn=s£¬Ôò³ÆµãB(t£¬s)ΪµãÁÐ{Bn}
µÄ¼«Ï޵㣮£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011½ì¸ß¿¼ÊýѧµÚÒ»ÂÖ¸´Ï°²âÊÔÌâ9 ÌâÐÍ£º013

ÊýÁÐ{an}ÖÐa1£½1£¬a5£½13£¬an+2£«an£½2an+1£»ÊýÁÐ{bn}ÖУ¬b2£½6£¬b3£½3£¬bn+2bn£½b£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÒÑÖªµãÁÐP1(a1£¬b1)£¬P2(a2£¬b2)£¬P3(a3£¬b3)£¬¡­£¬Pn(an£¬bn)¡­£¬ÔòÏòÁ¿£«¡­£«P2009P2010µÄ×ø±êΪ

[¡¡¡¡]
A£®

(3015£¬8[()1005£­1])

B£®

(3012)£¬8[()1005£­1]

C£®

(3015£¬8[()2010£­1])

D£®

(3018£¬8[()2010£­1])

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º0108 Ä£ÄâÌâ ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÊýÁÐ{an}ÖÐa1=1£¬a5=13£¬an+2+an=2an+1£»ÊýÁÐ{bn}ÖУ¬b2=6£¬b3=3£¬bn+2bn=b2n+1£¬ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÒÑÖªµãÁÐP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬P3£¨a3£¬b3£©£¬¡­£¬Pn£¨an£¬bn£©¡­£¬ÔòÏòÁ¿µÄ×ø±êΪ
[     ]
A.£¨3015£¬8[£¨£©1005-1]£©
B.£¨3012£¬[£¨£©1005-1]£©
C.£¨3015£¬[£¨£©2010-1]£©
D.£¨3018£¬[£¨£©2010-1]£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}ÖÐa1=1£¬a5=13£¬an£«2£«an=2an+1£»ÊýÁÐ{bn}ÖУ¬b2=6£¬b3=3£¬bn£«2bn=b2n+1,ÔÚÖ±½Ç×ø±êÆ½ÃæÄÚ£¬ÒÑÖªµãÁÐP1(a1£¬b1)£¬P2(a2£¬b2)£¬P3(a3£¬b3)£¬¡­£¬Pn(an£¬bn)£¬¡­£¬ÔòÏòÁ¿£«£«£«¡­£«µÄ×ø±êΪ£¨      £©

A£®                      B£®

C£®                      D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸