精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$,若对?a,b,c∈R,都有f(a)+f(b)>f(c)成立,则实数m的取值范围是[$\frac{1}{2}$,2].

分析 化简f(x)=1+$\frac{m-1}{{e}^{x}+1}$,讨论m≥1,当m<1时,判断函数的单调性,求得值域,再由不等式恒成立思想可得m的范围.

解答 解:由题意可得,f(a)+f(b)>f(c)对任意的a、b、c∈R恒成立,
∵函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$=$\frac{{e}^{x}+1+m-1}{{e}^{x}+1}$=1+$\frac{m-1}{{e}^{x}+1}$,
∴当m≥1时,函数f(x)在R上是减函数,函数的值域为(1,m);
即f(a)>1,f(b)>1,则f(a)+f(b)>2,
又f(c)<m,
由恒成立思想可得,1≤m≤2 ①.
当m<1时,函数f(x)在R上是增函数,函数的值域为(m,1);
故f(a)+f(b)>2m,f(c)<1,
同理可得2m≥1,即$\frac{1}{2}$≤m<1②
由①②可得$\frac{1}{2}$≤m≤2,
故答案为:[$\frac{1}{2}$,2].

点评 本题考查函数的值域和单调性的运用,同时考查不等式的恒成立问题转化为求最值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,则$\frac{S_6}{{{S_{12}}}}$的值为(  )
A.$\frac{10}{3}$B.$\frac{3}{10}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将函数y=sinx的图象先向左平移$\frac{π}{6}$个单位,再将图象上每一点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),得到函数y=g(x)的图象,则y=g(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sinα=-$\frac{{\sqrt{3}}}{3}$,且α是第三象限角,则sin2α-tanα=(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{2}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax2+bx+c,当x=-1时,f(x)的极大值为7,;当x=3时,f(x)有极小值.求:
(1)a,b,c的值;
(2)函数f(x)当x∈[-2,0]时的最大.小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知实数p,q,r满足:p+q+r=m,且p2+q2+r2=m(m>0).
(1)当r=$\frac{1}{2}$,求m的取值范围;
(2)当m=1,且p,q都不为0,求$\frac{1}{p}$+$\frac{1}{q}$的取值范围;
(3)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若α、β∈(0,$\frac{π}{2}$),且有sinα-sinβ=-$\frac{2}{3}$,cosα-cosβ=$\frac{2}{3}$,则tan(α-β)的值为(  )
A.$\frac{2\sqrt{14}}{5}$B.-$\frac{2\sqrt{14}}{5}$C.±$\frac{2\sqrt{14}}{5}$D.±$\frac{5\sqrt{14}}{28}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在(1+x+x2n=D${\;}_{n}^{0}$+D${\;}_{n}^{1}$x+D${\;}_{n}^{2}$x2+…+D${\;}_{n}^{r}$xr+…D${\;}_{n}^{2n-1}$x2n-1+D${\;}_{n}^{2n}$x2n的展开式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$,…,D${\;}_{n}^{2n}$叫做三项式系数.
(Ⅰ)当n=2时,写出三项式系数D${\;}_{2}^{0}$,D${\;}_{2}^{1}$,D${\;}_{2}^{2}$,D${\;}_{2}^{3}$,D${\;}_{2}^{4}$的值;
(Ⅱ)二项式(a+b)n(n∈N)的展开式中,系数可用杨辉三角形数阵表示,如图:当0≤n≤4,n∈N时,类似杨辉三角形数阵表,请列出三项式的n次系数列的数阵表;
(Ⅲ)求D${\;}_{2016}^{0}$C${\;}_{2016}^{0}$-D${\;}_{2016}^{1}$C${\;}_{2016}^{1}$+D${\;}_{2026}^{2}$C${\;}_{2016}^{2}$-D${\;}_{2016}^{3}$C${\;}_{2016}^{3}$+…D${\;}_{2016}^{2016}$C${\;}_{2016}^{2016}$的值(可用组合数作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某观察站C与两灯塔A、B的距离分别为300米和500米,测得灯塔A在观察站C北偏东30°,灯塔B在观察站C南偏东30°处,则两灯塔A、B间的距离为700米.

查看答案和解析>>

同步练习册答案